MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmop1 Structured version   Visualization version   GIF version

Theorem prmop1 15940
Description: The primorial of a successor. (Contributed by AV, 28-Aug-2020.)
Assertion
Ref Expression
prmop1 (𝑁 ∈ ℕ0 → (#p‘(𝑁 + 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))

Proof of Theorem prmop1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 peano2nn0 11521 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 prmoval 15935 . . 3 ((𝑁 + 1) ∈ ℕ0 → (#p‘(𝑁 + 1)) = ∏𝑘 ∈ (1...(𝑁 + 1))if(𝑘 ∈ ℙ, 𝑘, 1))
31, 2syl 17 . 2 (𝑁 ∈ ℕ0 → (#p‘(𝑁 + 1)) = ∏𝑘 ∈ (1...(𝑁 + 1))if(𝑘 ∈ ℙ, 𝑘, 1))
4 nn0p1nn 11520 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
5 elnnuz 11913 . . . 4 ((𝑁 + 1) ∈ ℕ ↔ (𝑁 + 1) ∈ (ℤ‘1))
64, 5sylib 208 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (ℤ‘1))
7 elfzelz 12531 . . . . . 6 (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℤ)
87zcnd 11671 . . . . 5 (𝑘 ∈ (1...(𝑁 + 1)) → 𝑘 ∈ ℂ)
98adantl 473 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...(𝑁 + 1))) → 𝑘 ∈ ℂ)
10 1cnd 10244 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...(𝑁 + 1))) → 1 ∈ ℂ)
119, 10ifcld 4271 . . 3 ((𝑁 ∈ ℕ0𝑘 ∈ (1...(𝑁 + 1))) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℂ)
12 eleq1 2823 . . . 4 (𝑘 = (𝑁 + 1) → (𝑘 ∈ ℙ ↔ (𝑁 + 1) ∈ ℙ))
13 id 22 . . . 4 (𝑘 = (𝑁 + 1) → 𝑘 = (𝑁 + 1))
1412, 13ifbieq1d 4249 . . 3 (𝑘 = (𝑁 + 1) → if(𝑘 ∈ ℙ, 𝑘, 1) = if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1))
156, 11, 14fprodm1 14892 . 2 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...(𝑁 + 1))if(𝑘 ∈ ℙ, 𝑘, 1) = (∏𝑘 ∈ (1...((𝑁 + 1) − 1))if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)))
16 nn0cn 11490 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
17 pncan1 10642 . . . . . . 7 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
1816, 17syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
1918oveq2d 6825 . . . . 5 (𝑁 ∈ ℕ0 → (1...((𝑁 + 1) − 1)) = (1...𝑁))
2019prodeq1d 14846 . . . 4 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...((𝑁 + 1) − 1))if(𝑘 ∈ ℙ, 𝑘, 1) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
2120oveq1d 6824 . . 3 (𝑁 ∈ ℕ0 → (∏𝑘 ∈ (1...((𝑁 + 1) − 1))if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)))
22 prmoval 15935 . . . . . . . 8 (𝑁 ∈ ℕ0 → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
2322eqcomd 2762 . . . . . . 7 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) = (#p𝑁))
2423adantl 473 . . . . . 6 (((𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) = (#p𝑁))
2524oveq1d 6824 . . . . 5 (((𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · (𝑁 + 1)) = ((#p𝑁) · (𝑁 + 1)))
26 iftrue 4232 . . . . . . . 8 ((𝑁 + 1) ∈ ℙ → if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1) = (𝑁 + 1))
2726oveq2d 6825 . . . . . . 7 ((𝑁 + 1) ∈ ℙ → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · (𝑁 + 1)))
28 iftrue 4232 . . . . . . 7 ((𝑁 + 1) ∈ ℙ → if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) = ((#p𝑁) · (𝑁 + 1)))
2927, 28eqeq12d 2771 . . . . . 6 ((𝑁 + 1) ∈ ℙ → ((∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) ↔ (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · (𝑁 + 1)) = ((#p𝑁) · (𝑁 + 1))))
3029adantr 472 . . . . 5 (((𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ((∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) ↔ (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · (𝑁 + 1)) = ((#p𝑁) · (𝑁 + 1))))
3125, 30mpbird 247 . . . 4 (((𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
32 fzfid 12962 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin)
33 elfznn 12559 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
34 1nn 11219 . . . . . . . . . . . . 13 1 ∈ ℕ
3534a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → 1 ∈ ℕ)
3633, 35ifcld 4271 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
3736adantl 473 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
3832, 37fprodnncl 14880 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
3938nncnd 11224 . . . . . . . 8 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℂ)
4039adantl 473 . . . . . . 7 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℂ)
4140mulid1d 10245 . . . . . 6 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
4222adantl 473 . . . . . 6 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
4341, 42eqtr4d 2793 . . . . 5 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1) = (#p𝑁))
44 iffalse 4235 . . . . . . . 8 (¬ (𝑁 + 1) ∈ ℙ → if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1) = 1)
4544oveq2d 6825 . . . . . . 7 (¬ (𝑁 + 1) ∈ ℙ → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1))
46 iffalse 4235 . . . . . . 7 (¬ (𝑁 + 1) ∈ ℙ → if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) = (#p𝑁))
4745, 46eqeq12d 2771 . . . . . 6 (¬ (𝑁 + 1) ∈ ℙ → ((∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) ↔ (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1) = (#p𝑁)))
4847adantr 472 . . . . 5 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → ((∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)) ↔ (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · 1) = (#p𝑁)))
4943, 48mpbird 247 . . . 4 ((¬ (𝑁 + 1) ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
5031, 49pm2.61ian 866 . . 3 (𝑁 ∈ ℕ0 → (∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
5121, 50eqtrd 2790 . 2 (𝑁 ∈ ℕ0 → (∏𝑘 ∈ (1...((𝑁 + 1) − 1))if(𝑘 ∈ ℙ, 𝑘, 1) · if((𝑁 + 1) ∈ ℙ, (𝑁 + 1), 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
523, 15, 513eqtrd 2794 1 (𝑁 ∈ ℕ0 → (#p‘(𝑁 + 1)) = if((𝑁 + 1) ∈ ℙ, ((#p𝑁) · (𝑁 + 1)), (#p𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1628  wcel 2135  ifcif 4226  cfv 6045  (class class class)co 6809  cc 10122  1c1 10125   + caddc 10127   · cmul 10129  cmin 10454  cn 11208  0cn0 11480  cuz 11875  ...cfz 12515  cprod 14830  cprime 15583  #pcprmo 15933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-inf2 8707  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201  ax-pre-sup 10202
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-fal 1634  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-se 5222  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-isom 6054  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-oadd 7729  df-er 7907  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-sup 8509  df-oi 8576  df-card 8951  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-div 10873  df-nn 11209  df-2 11267  df-3 11268  df-n0 11481  df-z 11566  df-uz 11876  df-rp 12022  df-fz 12516  df-fzo 12656  df-seq 12992  df-exp 13051  df-hash 13308  df-cj 14034  df-re 14035  df-im 14036  df-sqrt 14170  df-abs 14171  df-clim 14414  df-prod 14831  df-prmo 15934
This theorem is referenced by:  prmonn2  15941
  Copyright terms: Public domain W3C validator