![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmolefac | Structured version Visualization version GIF version |
Description: The primorial of a positive integer is less than or equal to the factorial of the integer. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 29-Aug-2020.) |
Ref | Expression |
---|---|
prmolefac | ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ≤ (!‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1994 | . . 3 ⊢ Ⅎ𝑘 𝑁 ∈ ℕ0 | |
2 | fzfid 12979 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin) | |
3 | elfznn 12576 | . . . . . 6 ⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) | |
4 | 3 | adantl 467 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ) |
5 | 1nn 11232 | . . . . . 6 ⊢ 1 ∈ ℕ | |
6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 1 ∈ ℕ) |
7 | 4, 6 | ifcld 4268 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ) |
8 | 7 | nnred 11236 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℝ) |
9 | ifeqor 4269 | . . . 4 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 ∨ if(𝑘 ∈ ℙ, 𝑘, 1) = 1) | |
10 | nnnn0 11500 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
11 | 10 | nn0ge0d 11555 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 0 ≤ 𝑘) |
12 | 3, 11 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ (1...𝑁) → 0 ≤ 𝑘) |
13 | 12 | adantl 467 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 0 ≤ 𝑘) |
14 | breq2 4788 | . . . . . 6 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 → (0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1) ↔ 0 ≤ 𝑘)) | |
15 | 13, 14 | syl5ibr 236 | . . . . 5 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 → ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1))) |
16 | 0le1 10752 | . . . . . . 7 ⊢ 0 ≤ 1 | |
17 | breq2 4788 | . . . . . . . 8 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 1 → (0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1) ↔ 0 ≤ 1)) | |
18 | 17 | adantr 466 | . . . . . . 7 ⊢ ((if(𝑘 ∈ ℙ, 𝑘, 1) = 1 ∧ (𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁))) → (0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1) ↔ 0 ≤ 1)) |
19 | 16, 18 | mpbiri 248 | . . . . . 6 ⊢ ((if(𝑘 ∈ ℙ, 𝑘, 1) = 1 ∧ (𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁))) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1)) |
20 | 19 | ex 397 | . . . . 5 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 1 → ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1))) |
21 | 15, 20 | jaoi 837 | . . . 4 ⊢ ((if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 ∨ if(𝑘 ∈ ℙ, 𝑘, 1) = 1) → ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1))) |
22 | 9, 21 | ax-mp 5 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1)) |
23 | 4 | nnred 11236 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℝ) |
24 | 23 | leidd 10795 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ≤ 𝑘) |
25 | breq1 4787 | . . . . . 6 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 → (if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘 ↔ 𝑘 ≤ 𝑘)) | |
26 | 24, 25 | syl5ibr 236 | . . . . 5 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 → ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘)) |
27 | 4 | nnge1d 11264 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 1 ≤ 𝑘) |
28 | breq1 4787 | . . . . . 6 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 1 → (if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘 ↔ 1 ≤ 𝑘)) | |
29 | 27, 28 | syl5ibr 236 | . . . . 5 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 1 → ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘)) |
30 | 26, 29 | jaoi 837 | . . . 4 ⊢ ((if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 ∨ if(𝑘 ∈ ℙ, 𝑘, 1) = 1) → ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘)) |
31 | 9, 30 | ax-mp 5 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘) |
32 | 1, 2, 8, 22, 23, 31 | fprodle 14932 | . 2 ⊢ (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ≤ ∏𝑘 ∈ (1...𝑁)𝑘) |
33 | prmoval 15943 | . 2 ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1)) | |
34 | fprodfac 14909 | . 2 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) = ∏𝑘 ∈ (1...𝑁)𝑘) | |
35 | 32, 33, 34 | 3brtr4d 4816 | 1 ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ≤ (!‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∨ wo 826 = wceq 1630 ∈ wcel 2144 ifcif 4223 class class class wbr 4784 ‘cfv 6031 (class class class)co 6792 0cc0 10137 1c1 10138 ≤ cle 10276 ℕcn 11221 ℕ0cn0 11493 ...cfz 12532 !cfa 13263 ∏cprod 14841 ℙcprime 15591 #pcprmo 15941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-sup 8503 df-oi 8570 df-card 8964 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-n0 11494 df-z 11579 df-uz 11888 df-rp 12035 df-ico 12385 df-fz 12533 df-fzo 12673 df-seq 13008 df-exp 13067 df-fac 13264 df-hash 13321 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-clim 14426 df-prod 14842 df-prmo 15942 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |