Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmodvdslcmf Structured version   Visualization version   GIF version

Theorem prmodvdslcmf 15694
 Description: The primorial of a nonnegative integer divides the least common multiple of all positive integers less than or equal to the integer. (Contributed by AV, 19-Aug-2020.) (Revised by AV, 29-Aug-2020.)
Assertion
Ref Expression
prmodvdslcmf (𝑁 ∈ ℕ0 → (#p𝑁) ∥ (lcm‘(1...𝑁)))

Proof of Theorem prmodvdslcmf
Dummy variables 𝑘 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmoval 15680 . . 3 (𝑁 ∈ ℕ0 → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
2 eqidd 2622 . . . . . 6 (𝑘 ∈ (1...𝑁) → (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)))
3 simpr 477 . . . . . . . 8 ((𝑘 ∈ (1...𝑁) ∧ 𝑚 = 𝑘) → 𝑚 = 𝑘)
43eleq1d 2683 . . . . . . 7 ((𝑘 ∈ (1...𝑁) ∧ 𝑚 = 𝑘) → (𝑚 ∈ ℙ ↔ 𝑘 ∈ ℙ))
54, 3ifbieq1d 4087 . . . . . 6 ((𝑘 ∈ (1...𝑁) ∧ 𝑚 = 𝑘) → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑘 ∈ ℙ, 𝑘, 1))
6 elfznn 12328 . . . . . 6 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
7 1nn 10991 . . . . . . . 8 1 ∈ ℕ
87a1i 11 . . . . . . 7 (𝑘 ∈ (1...𝑁) → 1 ∈ ℕ)
96, 8ifcld 4109 . . . . . 6 (𝑘 ∈ (1...𝑁) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
102, 5, 6, 9fvmptd 6255 . . . . 5 (𝑘 ∈ (1...𝑁) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) = if(𝑘 ∈ ℙ, 𝑘, 1))
1110eqcomd 2627 . . . 4 (𝑘 ∈ (1...𝑁) → if(𝑘 ∈ ℙ, 𝑘, 1) = ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))
1211prodeq2i 14593 . . 3 𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) = ∏𝑘 ∈ (1...𝑁)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘)
131, 12syl6eq 2671 . 2 (𝑁 ∈ ℕ0 → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))
14 fzfid 12728 . . . 4 (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin)
15 fz1ssnn 12330 . . . 4 (1...𝑁) ⊆ ℕ
1614, 15jctil 559 . . 3 (𝑁 ∈ ℕ0 → ((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin))
17 fzssz 12301 . . . . 5 (1...𝑁) ⊆ ℤ
1817a1i 11 . . . 4 (𝑁 ∈ ℕ0 → (1...𝑁) ⊆ ℤ)
19 0nelfz1 12318 . . . . 5 0 ∉ (1...𝑁)
2019a1i 11 . . . 4 (𝑁 ∈ ℕ0 → 0 ∉ (1...𝑁))
21 lcmfn0cl 15282 . . . 4 (((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin ∧ 0 ∉ (1...𝑁)) → (lcm‘(1...𝑁)) ∈ ℕ)
2218, 14, 20, 21syl3anc 1323 . . 3 (𝑁 ∈ ℕ0 → (lcm‘(1...𝑁)) ∈ ℕ)
23 id 22 . . . . . 6 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ)
247a1i 11 . . . . . 6 (𝑚 ∈ ℕ → 1 ∈ ℕ)
2523, 24ifcld 4109 . . . . 5 (𝑚 ∈ ℕ → if(𝑚 ∈ ℙ, 𝑚, 1) ∈ ℕ)
2625adantl 482 . . . 4 ((𝑁 ∈ ℕ0𝑚 ∈ ℕ) → if(𝑚 ∈ ℙ, 𝑚, 1) ∈ ℕ)
27 eqid 2621 . . . 4 (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))
2826, 27fmptd 6351 . . 3 (𝑁 ∈ ℕ0 → (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)):ℕ⟶ℕ)
29 simpr 477 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 𝑘 ∈ (1...𝑁))
3029adantr 481 . . . . . 6 (((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) ∧ 𝑥 ∈ ((1...𝑁) ∖ {𝑘})) → 𝑘 ∈ (1...𝑁))
31 eldifi 3716 . . . . . . 7 (𝑥 ∈ ((1...𝑁) ∖ {𝑘}) → 𝑥 ∈ (1...𝑁))
3231adantl 482 . . . . . 6 (((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) ∧ 𝑥 ∈ ((1...𝑁) ∖ {𝑘})) → 𝑥 ∈ (1...𝑁))
33 eldif 3570 . . . . . . . 8 (𝑥 ∈ ((1...𝑁) ∖ {𝑘}) ↔ (𝑥 ∈ (1...𝑁) ∧ ¬ 𝑥 ∈ {𝑘}))
34 velsn 4171 . . . . . . . . . . . 12 (𝑥 ∈ {𝑘} ↔ 𝑥 = 𝑘)
3534biimpri 218 . . . . . . . . . . 11 (𝑥 = 𝑘𝑥 ∈ {𝑘})
3635equcoms 1944 . . . . . . . . . 10 (𝑘 = 𝑥𝑥 ∈ {𝑘})
3736necon3bi 2816 . . . . . . . . 9 𝑥 ∈ {𝑘} → 𝑘𝑥)
3837adantl 482 . . . . . . . 8 ((𝑥 ∈ (1...𝑁) ∧ ¬ 𝑥 ∈ {𝑘}) → 𝑘𝑥)
3933, 38sylbi 207 . . . . . . 7 (𝑥 ∈ ((1...𝑁) ∖ {𝑘}) → 𝑘𝑥)
4039adantl 482 . . . . . 6 (((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) ∧ 𝑥 ∈ ((1...𝑁) ∖ {𝑘})) → 𝑘𝑥)
4127fvprmselgcd1 15692 . . . . . 6 ((𝑘 ∈ (1...𝑁) ∧ 𝑥 ∈ (1...𝑁) ∧ 𝑘𝑥) → (((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) gcd ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑥)) = 1)
4230, 32, 40, 41syl3anc 1323 . . . . 5 (((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) ∧ 𝑥 ∈ ((1...𝑁) ∖ {𝑘})) → (((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) gcd ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑥)) = 1)
4342ralrimiva 2962 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → ∀𝑥 ∈ ((1...𝑁) ∖ {𝑘})(((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) gcd ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑥)) = 1)
4443ralrimiva 2962 . . 3 (𝑁 ∈ ℕ0 → ∀𝑘 ∈ (1...𝑁)∀𝑥 ∈ ((1...𝑁) ∖ {𝑘})(((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) gcd ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑥)) = 1)
45 eqidd 2622 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)))
46 simpr 477 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) ∧ 𝑚 = 𝑘) → 𝑚 = 𝑘)
4746eleq1d 2683 . . . . . . 7 (((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) ∧ 𝑚 = 𝑘) → (𝑚 ∈ ℙ ↔ 𝑘 ∈ ℙ))
4847, 46ifbieq1d 4087 . . . . . 6 (((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) ∧ 𝑚 = 𝑘) → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑘 ∈ ℙ, 𝑘, 1))
4915, 29sseldi 3586 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ)
5017, 29sseldi 3586 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℤ)
51 1zzd 11368 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 1 ∈ ℤ)
5250, 51ifcld 4109 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ)
5345, 48, 49, 52fvmptd 6255 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) = if(𝑘 ∈ ℙ, 𝑘, 1))
54 elfzuz2 12304 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → 𝑁 ∈ (ℤ‘1))
5554adantl 482 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 𝑁 ∈ (ℤ‘1))
56 eluzfz1 12306 . . . . . . . 8 (𝑁 ∈ (ℤ‘1) → 1 ∈ (1...𝑁))
5755, 56syl 17 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 1 ∈ (1...𝑁))
5829, 57ifcld 4109 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ (1...𝑁))
5916adantr 481 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → ((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin))
60172a1i 12 . . . . . . . 8 ((1...𝑁) ∈ Fin → ((1...𝑁) ⊆ ℕ → (1...𝑁) ⊆ ℤ))
6160imdistanri 726 . . . . . . 7 (((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin) → ((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin))
62 dvdslcmf 15287 . . . . . . 7 (((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin) → ∀𝑥 ∈ (1...𝑁)𝑥 ∥ (lcm‘(1...𝑁)))
6359, 61, 623syl 18 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → ∀𝑥 ∈ (1...𝑁)𝑥 ∥ (lcm‘(1...𝑁)))
64 breq1 4626 . . . . . . 7 (𝑥 = if(𝑘 ∈ ℙ, 𝑘, 1) → (𝑥 ∥ (lcm‘(1...𝑁)) ↔ if(𝑘 ∈ ℙ, 𝑘, 1) ∥ (lcm‘(1...𝑁))))
6564rspcv 3295 . . . . . 6 (if(𝑘 ∈ ℙ, 𝑘, 1) ∈ (1...𝑁) → (∀𝑥 ∈ (1...𝑁)𝑥 ∥ (lcm‘(1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∥ (lcm‘(1...𝑁))))
6658, 63, 65sylc 65 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∥ (lcm‘(1...𝑁)))
6753, 66eqbrtrd 4645 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) ∥ (lcm‘(1...𝑁)))
6867ralrimiva 2962 . . 3 (𝑁 ∈ ℕ0 → ∀𝑘 ∈ (1...𝑁)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) ∥ (lcm‘(1...𝑁)))
69 coprmproddvds 15320 . . 3 ((((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin) ∧ ((lcm‘(1...𝑁)) ∈ ℕ ∧ (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)):ℕ⟶ℕ) ∧ (∀𝑘 ∈ (1...𝑁)∀𝑥 ∈ ((1...𝑁) ∖ {𝑘})(((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) gcd ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑥)) = 1 ∧ ∀𝑘 ∈ (1...𝑁)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) ∥ (lcm‘(1...𝑁)))) → ∏𝑘 ∈ (1...𝑁)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) ∥ (lcm‘(1...𝑁)))
7016, 22, 28, 44, 68, 69syl122anc 1332 . 2 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) ∥ (lcm‘(1...𝑁)))
7113, 70eqbrtrd 4645 1 (𝑁 ∈ ℕ0 → (#p𝑁) ∥ (lcm‘(1...𝑁)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790   ∉ wnel 2893  ∀wral 2908   ∖ cdif 3557   ⊆ wss 3560  ifcif 4064  {csn 4155   class class class wbr 4623   ↦ cmpt 4683  ⟶wf 5853  ‘cfv 5857  (class class class)co 6615  Fincfn 7915  0cc0 9896  1c1 9897  ℕcn 10980  ℕ0cn0 11252  ℤcz 11337  ℤ≥cuz 11647  ...cfz 12284  ∏cprod 14579   ∥ cdvds 14926   gcd cgcd 15159  lcmclcmf 15245  ℙcprime 15328  #pcprmo 15678 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-rp 11793  df-fz 12285  df-fzo 12423  df-fl 12549  df-mod 12625  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-clim 14169  df-prod 14580  df-dvds 14927  df-gcd 15160  df-lcmf 15247  df-prm 15329  df-prmo 15679 This theorem is referenced by:  prmolelcmf  15695
 Copyright terms: Public domain W3C validator