![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmo3 | Structured version Visualization version GIF version |
Description: The primorial of 3. (Contributed by AV, 28-Aug-2020.) |
Ref | Expression |
---|---|
prmo3 | ⊢ (#p‘3) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn 11399 | . . 3 ⊢ 3 ∈ ℕ | |
2 | prmonn2 15966 | . . 3 ⊢ (3 ∈ ℕ → (#p‘3) = if(3 ∈ ℙ, ((#p‘(3 − 1)) · 3), (#p‘(3 − 1)))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (#p‘3) = if(3 ∈ ℙ, ((#p‘(3 − 1)) · 3), (#p‘(3 − 1))) |
4 | 3prm 15629 | . . . 4 ⊢ 3 ∈ ℙ | |
5 | 4 | iftruei 4238 | . . 3 ⊢ if(3 ∈ ℙ, ((#p‘(3 − 1)) · 3), (#p‘(3 − 1))) = ((#p‘(3 − 1)) · 3) |
6 | 3m1e2 11350 | . . . . . . 7 ⊢ (3 − 1) = 2 | |
7 | 6 | fveq2i 6357 | . . . . . 6 ⊢ (#p‘(3 − 1)) = (#p‘2) |
8 | prmo2 15967 | . . . . . 6 ⊢ (#p‘2) = 2 | |
9 | 7, 8 | eqtri 2783 | . . . . 5 ⊢ (#p‘(3 − 1)) = 2 |
10 | 9 | oveq1i 6825 | . . . 4 ⊢ ((#p‘(3 − 1)) · 3) = (2 · 3) |
11 | 3cn 11308 | . . . . 5 ⊢ 3 ∈ ℂ | |
12 | 2cn 11304 | . . . . 5 ⊢ 2 ∈ ℂ | |
13 | 3t2e6 11392 | . . . . 5 ⊢ (3 · 2) = 6 | |
14 | 11, 12, 13 | mulcomli 10260 | . . . 4 ⊢ (2 · 3) = 6 |
15 | 10, 14 | eqtri 2783 | . . 3 ⊢ ((#p‘(3 − 1)) · 3) = 6 |
16 | 5, 15 | eqtri 2783 | . 2 ⊢ if(3 ∈ ℙ, ((#p‘(3 − 1)) · 3), (#p‘(3 − 1))) = 6 |
17 | 3, 16 | eqtri 2783 | 1 ⊢ (#p‘3) = 6 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2140 ifcif 4231 ‘cfv 6050 (class class class)co 6815 1c1 10150 · cmul 10154 − cmin 10479 ℕcn 11233 2c2 11283 3c3 11284 6c6 11287 ℙcprime 15608 #pcprmo 15958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-inf2 8714 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-se 5227 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-isom 6059 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-2o 7732 df-oadd 7735 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-sup 8516 df-inf 8517 df-oi 8583 df-card 8976 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-n0 11506 df-z 11591 df-uz 11901 df-rp 12047 df-fz 12541 df-fzo 12681 df-seq 13017 df-exp 13076 df-hash 13333 df-cj 14059 df-re 14060 df-im 14061 df-sqrt 14195 df-abs 14196 df-clim 14439 df-prod 14856 df-dvds 15204 df-prm 15609 df-prmo 15959 |
This theorem is referenced by: prmo4 16058 |
Copyright terms: Public domain | W3C validator |