![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmlem1 | Structured version Visualization version GIF version |
Description: A quick proof skeleton to show that the numbers less than 25 are prime, by trial division. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
prmlem1.n | ⊢ 𝑁 ∈ ℕ |
prmlem1.gt | ⊢ 1 < 𝑁 |
prmlem1.2 | ⊢ ¬ 2 ∥ 𝑁 |
prmlem1.3 | ⊢ ¬ 3 ∥ 𝑁 |
prmlem1.lt | ⊢ 𝑁 < ;25 |
Ref | Expression |
---|---|
prmlem1 | ⊢ 𝑁 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmlem1.n | . 2 ⊢ 𝑁 ∈ ℕ | |
2 | prmlem1.gt | . 2 ⊢ 1 < 𝑁 | |
3 | prmlem1.2 | . 2 ⊢ ¬ 2 ∥ 𝑁 | |
4 | prmlem1.3 | . 2 ⊢ ¬ 3 ∥ 𝑁 | |
5 | eluzelre 11811 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘5) → 𝑥 ∈ ℝ) | |
6 | 5 | resqcld 13150 | . . . . . . 7 ⊢ (𝑥 ∈ (ℤ≥‘5) → (𝑥↑2) ∈ ℝ) |
7 | eluzle 11813 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℤ≥‘5) → 5 ≤ 𝑥) | |
8 | 5re 11212 | . . . . . . . . 9 ⊢ 5 ∈ ℝ | |
9 | 5nn0 11425 | . . . . . . . . . 10 ⊢ 5 ∈ ℕ0 | |
10 | 9 | nn0ge0i 11433 | . . . . . . . . 9 ⊢ 0 ≤ 5 |
11 | le2sq2 13054 | . . . . . . . . 9 ⊢ (((5 ∈ ℝ ∧ 0 ≤ 5) ∧ (𝑥 ∈ ℝ ∧ 5 ≤ 𝑥)) → (5↑2) ≤ (𝑥↑2)) | |
12 | 8, 10, 11 | mpanl12 720 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 5 ≤ 𝑥) → (5↑2) ≤ (𝑥↑2)) |
13 | 5, 7, 12 | syl2anc 696 | . . . . . . 7 ⊢ (𝑥 ∈ (ℤ≥‘5) → (5↑2) ≤ (𝑥↑2)) |
14 | 1 | nnrei 11142 | . . . . . . . 8 ⊢ 𝑁 ∈ ℝ |
15 | 8 | resqcli 13064 | . . . . . . . 8 ⊢ (5↑2) ∈ ℝ |
16 | prmlem1.lt | . . . . . . . . . 10 ⊢ 𝑁 < ;25 | |
17 | 5cn 11213 | . . . . . . . . . . . 12 ⊢ 5 ∈ ℂ | |
18 | 17 | sqvali 13058 | . . . . . . . . . . 11 ⊢ (5↑2) = (5 · 5) |
19 | 5t5e25 11752 | . . . . . . . . . . 11 ⊢ (5 · 5) = ;25 | |
20 | 18, 19 | eqtri 2746 | . . . . . . . . . 10 ⊢ (5↑2) = ;25 |
21 | 16, 20 | breqtrri 4787 | . . . . . . . . 9 ⊢ 𝑁 < (5↑2) |
22 | ltletr 10242 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℝ ∧ (5↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((𝑁 < (5↑2) ∧ (5↑2) ≤ (𝑥↑2)) → 𝑁 < (𝑥↑2))) | |
23 | 21, 22 | mpani 714 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℝ ∧ (5↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → ((5↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2))) |
24 | 14, 15, 23 | mp3an12 1527 | . . . . . . 7 ⊢ ((𝑥↑2) ∈ ℝ → ((5↑2) ≤ (𝑥↑2) → 𝑁 < (𝑥↑2))) |
25 | 6, 13, 24 | sylc 65 | . . . . . 6 ⊢ (𝑥 ∈ (ℤ≥‘5) → 𝑁 < (𝑥↑2)) |
26 | ltnle 10230 | . . . . . . 7 ⊢ ((𝑁 ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁)) | |
27 | 14, 6, 26 | sylancr 698 | . . . . . 6 ⊢ (𝑥 ∈ (ℤ≥‘5) → (𝑁 < (𝑥↑2) ↔ ¬ (𝑥↑2) ≤ 𝑁)) |
28 | 25, 27 | mpbid 222 | . . . . 5 ⊢ (𝑥 ∈ (ℤ≥‘5) → ¬ (𝑥↑2) ≤ 𝑁) |
29 | 28 | pm2.21d 118 | . . . 4 ⊢ (𝑥 ∈ (ℤ≥‘5) → ((𝑥↑2) ≤ 𝑁 → ¬ 𝑥 ∥ 𝑁)) |
30 | 29 | adantld 484 | . . 3 ⊢ (𝑥 ∈ (ℤ≥‘5) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
31 | 30 | adantl 473 | . 2 ⊢ ((¬ 2 ∥ 5 ∧ 𝑥 ∈ (ℤ≥‘5)) → ((𝑥 ∈ (ℙ ∖ {2}) ∧ (𝑥↑2) ≤ 𝑁) → ¬ 𝑥 ∥ 𝑁)) |
32 | 1, 2, 3, 4, 31 | prmlem1a 15936 | 1 ⊢ 𝑁 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2103 ∖ cdif 3677 {csn 4285 class class class wbr 4760 ‘cfv 6001 (class class class)co 6765 ℝcr 10048 0cc0 10049 1c1 10050 · cmul 10054 < clt 10187 ≤ cle 10188 ℕcn 11133 2c2 11183 3c3 11184 5c5 11186 ;cdc 11606 ℤ≥cuz 11800 ↑cexp 12975 ∥ cdvds 15103 ℙcprime 15508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 ax-pre-sup 10127 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-1st 7285 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-2o 7681 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-sup 8464 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-div 10798 df-nn 11134 df-2 11192 df-3 11193 df-4 11194 df-5 11195 df-6 11196 df-7 11197 df-8 11198 df-9 11199 df-n0 11406 df-z 11491 df-dec 11607 df-uz 11801 df-rp 11947 df-fz 12441 df-seq 12917 df-exp 12976 df-cj 13959 df-re 13960 df-im 13961 df-sqrt 14095 df-abs 14096 df-dvds 15104 df-prm 15509 |
This theorem is referenced by: 5prm 15938 7prm 15940 11prm 15945 13prm 15946 17prm 15947 19prm 15948 23prm 15949 |
Copyright terms: Public domain | W3C validator |