MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmirred Structured version   Visualization version   GIF version

Theorem prmirred 20058
Description: The irreducible elements of are exactly the prime numbers (and their negatives). (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.)
Hypothesis
Ref Expression
prmirred.i 𝐼 = (Irred‘ℤring)
Assertion
Ref Expression
prmirred (𝐴𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈ ℙ))

Proof of Theorem prmirred
StepHypRef Expression
1 prmirred.i . . 3 𝐼 = (Irred‘ℤring)
2 zringbas 20039 . . 3 ℤ = (Base‘ℤring)
31, 2irredcl 18912 . 2 (𝐴𝐼𝐴 ∈ ℤ)
4 elnn0 11496 . . . . . . 7 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
5 ax-1 6 . . . . . . . 8 (𝐴 ∈ ℕ → (𝐴𝐼𝐴 ∈ ℕ))
6 zringring 20036 . . . . . . . . . . 11 ring ∈ Ring
7 zring0 20043 . . . . . . . . . . . 12 0 = (0g‘ℤring)
81, 7irredn0 18911 . . . . . . . . . . 11 ((ℤring ∈ Ring ∧ 𝐴𝐼) → 𝐴 ≠ 0)
96, 8mpan 670 . . . . . . . . . 10 (𝐴𝐼𝐴 ≠ 0)
109necon2bi 2973 . . . . . . . . 9 (𝐴 = 0 → ¬ 𝐴𝐼)
1110pm2.21d 119 . . . . . . . 8 (𝐴 = 0 → (𝐴𝐼𝐴 ∈ ℕ))
125, 11jaoi 844 . . . . . . 7 ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (𝐴𝐼𝐴 ∈ ℕ))
134, 12sylbi 207 . . . . . 6 (𝐴 ∈ ℕ0 → (𝐴𝐼𝐴 ∈ ℕ))
14 prmnn 15595 . . . . . . 7 (𝐴 ∈ ℙ → 𝐴 ∈ ℕ)
1514a1i 11 . . . . . 6 (𝐴 ∈ ℕ0 → (𝐴 ∈ ℙ → 𝐴 ∈ ℕ))
161prmirredlem 20056 . . . . . . 7 (𝐴 ∈ ℕ → (𝐴𝐼𝐴 ∈ ℙ))
1716a1i 11 . . . . . 6 (𝐴 ∈ ℕ0 → (𝐴 ∈ ℕ → (𝐴𝐼𝐴 ∈ ℙ)))
1813, 15, 17pm5.21ndd 368 . . . . 5 (𝐴 ∈ ℕ0 → (𝐴𝐼𝐴 ∈ ℙ))
19 nn0re 11503 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
20 nn0ge0 11520 . . . . . . 7 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
2119, 20absidd 14369 . . . . . 6 (𝐴 ∈ ℕ0 → (abs‘𝐴) = 𝐴)
2221eleq1d 2835 . . . . 5 (𝐴 ∈ ℕ0 → ((abs‘𝐴) ∈ ℙ ↔ 𝐴 ∈ ℙ))
2318, 22bitr4d 271 . . . 4 (𝐴 ∈ ℕ0 → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
2423adantl 467 . . 3 ((𝐴 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
251prmirredlem 20056 . . . . . 6 (-𝐴 ∈ ℕ → (-𝐴𝐼 ↔ -𝐴 ∈ ℙ))
2625adantl 467 . . . . 5 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (-𝐴𝐼 ↔ -𝐴 ∈ ℙ))
27 eqid 2771 . . . . . . . . 9 (invg‘ℤring) = (invg‘ℤring)
281, 27, 2irrednegb 18919 . . . . . . . 8 ((ℤring ∈ Ring ∧ 𝐴 ∈ ℤ) → (𝐴𝐼 ↔ ((invg‘ℤring)‘𝐴) ∈ 𝐼))
296, 28mpan 670 . . . . . . 7 (𝐴 ∈ ℤ → (𝐴𝐼 ↔ ((invg‘ℤring)‘𝐴) ∈ 𝐼))
30 zsubrg 20014 . . . . . . . . . . 11 ℤ ∈ (SubRing‘ℂfld)
31 subrgsubg 18996 . . . . . . . . . . 11 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld))
3230, 31ax-mp 5 . . . . . . . . . 10 ℤ ∈ (SubGrp‘ℂfld)
33 df-zring 20034 . . . . . . . . . . 11 ring = (ℂflds ℤ)
34 eqid 2771 . . . . . . . . . . 11 (invg‘ℂfld) = (invg‘ℂfld)
3533, 34, 27subginv 17809 . . . . . . . . . 10 ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝐴 ∈ ℤ) → ((invg‘ℂfld)‘𝐴) = ((invg‘ℤring)‘𝐴))
3632, 35mpan 670 . . . . . . . . 9 (𝐴 ∈ ℤ → ((invg‘ℂfld)‘𝐴) = ((invg‘ℤring)‘𝐴))
37 zcn 11584 . . . . . . . . . 10 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
38 cnfldneg 19987 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((invg‘ℂfld)‘𝐴) = -𝐴)
3937, 38syl 17 . . . . . . . . 9 (𝐴 ∈ ℤ → ((invg‘ℂfld)‘𝐴) = -𝐴)
4036, 39eqtr3d 2807 . . . . . . . 8 (𝐴 ∈ ℤ → ((invg‘ℤring)‘𝐴) = -𝐴)
4140eleq1d 2835 . . . . . . 7 (𝐴 ∈ ℤ → (((invg‘ℤring)‘𝐴) ∈ 𝐼 ↔ -𝐴𝐼))
4229, 41bitrd 268 . . . . . 6 (𝐴 ∈ ℤ → (𝐴𝐼 ↔ -𝐴𝐼))
4342adantr 466 . . . . 5 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴𝐼 ↔ -𝐴𝐼))
44 zre 11583 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
4544adantr 466 . . . . . . 7 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 𝐴 ∈ ℝ)
46 nnnn0 11501 . . . . . . . . . 10 (-𝐴 ∈ ℕ → -𝐴 ∈ ℕ0)
4746nn0ge0d 11556 . . . . . . . . 9 (-𝐴 ∈ ℕ → 0 ≤ -𝐴)
4847adantl 467 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 0 ≤ -𝐴)
4945le0neg1d 10801 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
5048, 49mpbird 247 . . . . . . 7 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → 𝐴 ≤ 0)
5145, 50absnidd 14360 . . . . . 6 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (abs‘𝐴) = -𝐴)
5251eleq1d 2835 . . . . 5 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → ((abs‘𝐴) ∈ ℙ ↔ -𝐴 ∈ ℙ))
5326, 43, 523bitr4d 300 . . . 4 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℕ) → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
5453adantrl 695 . . 3 ((𝐴 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
55 elznn0nn 11593 . . . 4 (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)))
5655biimpi 206 . . 3 (𝐴 ∈ ℤ → (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)))
5724, 54, 56mpjaodan 939 . 2 (𝐴 ∈ ℤ → (𝐴𝐼 ↔ (abs‘𝐴) ∈ ℙ))
583, 57biadan2 819 1 (𝐴𝐼 ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) ∈ ℙ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wo 834   = wceq 1631  wcel 2145  wne 2943   class class class wbr 4786  cfv 6031  cc 10136  cr 10137  0cc0 10138  cle 10277  -cneg 10469  cn 11222  0cn0 11494  cz 11579  abscabs 14182  cprime 15592  invgcminusg 17631  SubGrpcsubg 17796  Ringcrg 18755  Irredcir 18848  SubRingcsubrg 18986  fldccnfld 19961  ringzring 20033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-rp 12036  df-fz 12534  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-dvds 15190  df-prm 15593  df-gz 15841  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-subg 17799  df-cmn 18402  df-mgp 18698  df-ur 18710  df-ring 18757  df-cring 18758  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-irred 18851  df-invr 18880  df-dvr 18891  df-drng 18959  df-subrg 18988  df-cnfld 19962  df-zring 20034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator