MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgapprmo Structured version   Visualization version   GIF version

Theorem prmgapprmo 15988
Description: Alternate proof of prmgap 15985: in contrast to prmgap 15985, where the gap starts at n! , the factorial of n, the gap starts at n#, the primorial of n. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 29-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
prmgapprmo 𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)
Distinct variable group:   𝑛,𝑝,𝑞,𝑧

Proof of Theorem prmgapprmo
Dummy variables 𝑖 𝑗 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
2 eqid 2760 . . . . . 6 (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘)) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))
3 fzfid 12986 . . . . . . 7 (𝑗 ∈ ℕ → (1...𝑗) ∈ Fin)
4 eqidd 2761 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (1...𝑗)) → (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)))
5 eleq1 2827 . . . . . . . . . . 11 (𝑚 = 𝑘 → (𝑚 ∈ ℙ ↔ 𝑘 ∈ ℙ))
6 id 22 . . . . . . . . . . 11 (𝑚 = 𝑘𝑚 = 𝑘)
75, 6ifbieq1d 4253 . . . . . . . . . 10 (𝑚 = 𝑘 → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑘 ∈ ℙ, 𝑘, 1))
87adantl 473 . . . . . . . . 9 (((𝑗 ∈ ℕ ∧ 𝑘 ∈ (1...𝑗)) ∧ 𝑚 = 𝑘) → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑘 ∈ ℙ, 𝑘, 1))
9 elfznn 12583 . . . . . . . . . 10 (𝑘 ∈ (1...𝑗) → 𝑘 ∈ ℕ)
109adantl 473 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (1...𝑗)) → 𝑘 ∈ ℕ)
11 1nn 11243 . . . . . . . . . . . 12 1 ∈ ℕ
1211a1i 11 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑗) → 1 ∈ ℕ)
139, 12ifcld 4275 . . . . . . . . . 10 (𝑘 ∈ (1...𝑗) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
1413adantl 473 . . . . . . . . 9 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (1...𝑗)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
154, 8, 10, 14fvmptd 6451 . . . . . . . 8 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (1...𝑗)) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) = if(𝑘 ∈ ℙ, 𝑘, 1))
1615, 14eqeltrd 2839 . . . . . . 7 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (1...𝑗)) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) ∈ ℕ)
173, 16fprodnncl 14904 . . . . . 6 (𝑗 ∈ ℕ → ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) ∈ ℕ)
182, 17fmpti 6547 . . . . 5 (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘)):ℕ⟶ℕ
19 nnex 11238 . . . . . 6 ℕ ∈ V
2019, 19elmap 8054 . . . . 5 ((𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘)) ∈ (ℕ ↑𝑚 ℕ) ↔ (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘)):ℕ⟶ℕ)
2118, 20mpbir 221 . . . 4 (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘)) ∈ (ℕ ↑𝑚 ℕ)
2221a1i 11 . . 3 (𝑛 ∈ ℕ → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘)) ∈ (ℕ ↑𝑚 ℕ))
23 prmgapprmolem 15987 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 1 < (((#p𝑛) + 𝑖) gcd 𝑖))
24 eqidd 2761 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)) = (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1)))
257adantl 473 . . . . . . . . . . . 12 (((((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) ∧ 𝑚 = 𝑘) → if(𝑚 ∈ ℙ, 𝑚, 1) = if(𝑘 ∈ ℙ, 𝑘, 1))
269adantl 473 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝑘 ∈ ℕ)
27 elfzelz 12555 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑗) → 𝑘 ∈ ℤ)
28 1zzd 11620 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑗) → 1 ∈ ℤ)
2927, 28ifcld 4275 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑗) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ)
3029adantl 473 . . . . . . . . . . . 12 ((((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ)
3124, 25, 26, 30fvmptd 6451 . . . . . . . . . . 11 ((((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → ((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) = if(𝑘 ∈ ℙ, 𝑘, 1))
3231prodeq2dv 14872 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘) = ∏𝑘 ∈ (1...𝑗)if(𝑘 ∈ ℙ, 𝑘, 1))
3332mpteq2dva 4896 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘)) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)if(𝑘 ∈ ℙ, 𝑘, 1)))
34 oveq2 6822 . . . . . . . . . . 11 (𝑗 = 𝑛 → (1...𝑗) = (1...𝑛))
3534prodeq1d 14870 . . . . . . . . . 10 (𝑗 = 𝑛 → ∏𝑘 ∈ (1...𝑗)if(𝑘 ∈ ℙ, 𝑘, 1) = ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1))
3635adantl 473 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑗 = 𝑛) → ∏𝑘 ∈ (1...𝑗)if(𝑘 ∈ ℙ, 𝑘, 1) = ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1))
37 simpl 474 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 𝑛 ∈ ℕ)
38 fzfid 12986 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (1...𝑛) ∈ Fin)
39 elfznn 12583 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
4011a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑛) → 1 ∈ ℕ)
4139, 40ifcld 4275 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑛) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
4241adantl 473 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑘 ∈ (1...𝑛)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
4338, 42fprodnncl 14904 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
4433, 36, 37, 43fvmptd 6451 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))‘𝑛) = ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1))
45 nnnn0 11511 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
46 prmoval 15959 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (#p𝑛) = ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1))
4745, 46syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (#p𝑛) = ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1))
4847eqcomd 2766 . . . . . . . . 9 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1) = (#p𝑛))
4948adantr 472 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1) = (#p𝑛))
5044, 49eqtrd 2794 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))‘𝑛) = (#p𝑛))
5150oveq1d 6829 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (((𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))‘𝑛) + 𝑖) = ((#p𝑛) + 𝑖))
5251oveq1d 6829 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((((𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))‘𝑛) + 𝑖) gcd 𝑖) = (((#p𝑛) + 𝑖) gcd 𝑖))
5323, 52breqtrrd 4832 . . . 4 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 1 < ((((𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))‘𝑛) + 𝑖) gcd 𝑖))
5453ralrimiva 3104 . . 3 (𝑛 ∈ ℕ → ∀𝑖 ∈ (2...𝑛)1 < ((((𝑗 ∈ ℕ ↦ ∏𝑘 ∈ (1...𝑗)((𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, 𝑚, 1))‘𝑘))‘𝑛) + 𝑖) gcd 𝑖))
551, 22, 54prmgaplem8 15984 . 2 (𝑛 ∈ ℕ → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ))
5655rgen 3060 1 𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1632  wcel 2139  wnel 3035  wral 3050  wrex 3051  ifcif 4230   class class class wbr 4804  cmpt 4881  wf 6045  cfv 6049  (class class class)co 6814  𝑚 cmap 8025  1c1 10149   + caddc 10151   < clt 10286  cle 10287  cmin 10478  cn 11232  2c2 11282  0cn0 11504  cz 11589  ...cfz 12539  ..^cfzo 12679  cprod 14854   gcd cgcd 15438  cprime 15607  #pcprmo 15957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-fz 12540  df-fzo 12680  df-seq 13016  df-exp 13075  df-fac 13275  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-prod 14855  df-dvds 15203  df-gcd 15439  df-prm 15608  df-prmo 15958
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator