MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem8 Structured version   Visualization version   GIF version

Theorem prmgaplem8 15969
Description: Lemma for prmgap 15970. (Contributed by AV, 13-Aug-2020.)
Hypotheses
Ref Expression
prmgaplem7.n (𝜑𝑁 ∈ ℕ)
prmgaplem7.f (𝜑𝐹 ∈ (ℕ ↑𝑚 ℕ))
prmgaplem7.i (𝜑 → ∀𝑖 ∈ (2...𝑁)1 < (((𝐹𝑁) + 𝑖) gcd 𝑖))
Assertion
Ref Expression
prmgaplem8 (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ))
Distinct variable groups:   𝐹,𝑝,𝑞,𝑧   𝑖,𝐹   𝑁,𝑝,𝑞,𝑧   𝑖,𝑁   𝜑,𝑝,𝑞,𝑧
Allowed substitution hint:   𝜑(𝑖)

Proof of Theorem prmgaplem8
StepHypRef Expression
1 prmnn 15595 . . . . . . . . 9 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
21nnred 11237 . . . . . . . 8 (𝑞 ∈ ℙ → 𝑞 ∈ ℝ)
32ad2antll 708 . . . . . . 7 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 𝑞 ∈ ℝ)
4 prmnn 15595 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
54nnred 11237 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
65ad2antlr 706 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑝 ∈ ℝ)
76adantl 467 . . . . . . 7 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 𝑝 ∈ ℝ)
8 prmgaplem7.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
98nnred 11237 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
109ad2antrr 705 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑁 ∈ ℝ)
1110adantl 467 . . . . . . 7 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 𝑁 ∈ ℝ)
12 prmgaplem7.f . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (ℕ ↑𝑚 ℕ))
13 elmapi 8031 . . . . . . . . . . . . 13 (𝐹 ∈ (ℕ ↑𝑚 ℕ) → 𝐹:ℕ⟶ℕ)
14 ffvelrn 6500 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶ℕ ∧ 𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℕ)
1514ex 397 . . . . . . . . . . . . 13 (𝐹:ℕ⟶ℕ → (𝑁 ∈ ℕ → (𝐹𝑁) ∈ ℕ))
1612, 13, 153syl 18 . . . . . . . . . . . 12 (𝜑 → (𝑁 ∈ ℕ → (𝐹𝑁) ∈ ℕ))
178, 16mpd 15 . . . . . . . . . . 11 (𝜑 → (𝐹𝑁) ∈ ℕ)
1817nnred 11237 . . . . . . . . . 10 (𝜑 → (𝐹𝑁) ∈ ℝ)
1918ad2antrr 705 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝐹𝑁) ∈ ℝ)
2019adantl 467 . . . . . . . 8 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → (𝐹𝑁) ∈ ℝ)
21 1red 10257 . . . . . . . 8 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 1 ∈ ℝ)
2220, 21readdcld 10271 . . . . . . 7 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → ((𝐹𝑁) + 1) ∈ ℝ)
2317nncnd 11238 . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝑁) ∈ ℂ)
24 1cnd 10258 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
258nncnd 11238 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
2623, 24, 25add32d 10465 . . . . . . . . . . . . 13 (𝜑 → (((𝐹𝑁) + 1) + 𝑁) = (((𝐹𝑁) + 𝑁) + 1))
2726adantr 466 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → (((𝐹𝑁) + 1) + 𝑁) = (((𝐹𝑁) + 𝑁) + 1))
2827ad2antrr 705 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) → (((𝐹𝑁) + 1) + 𝑁) = (((𝐹𝑁) + 𝑁) + 1))
2917nnzd 11683 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝑁) ∈ ℤ)
3029adantr 466 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℙ) → (𝐹𝑁) ∈ ℤ)
318nnzd 11683 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
3231adantr 466 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
3330, 32zaddcld 11688 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → ((𝐹𝑁) + 𝑁) ∈ ℤ)
34 prmz 15596 . . . . . . . . . . . . 13 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
35 zltp1le 11629 . . . . . . . . . . . . 13 ((((𝐹𝑁) + 𝑁) ∈ ℤ ∧ 𝑞 ∈ ℤ) → (((𝐹𝑁) + 𝑁) < 𝑞 ↔ (((𝐹𝑁) + 𝑁) + 1) ≤ 𝑞))
3633, 34, 35syl2an 583 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (((𝐹𝑁) + 𝑁) < 𝑞 ↔ (((𝐹𝑁) + 𝑁) + 1) ≤ 𝑞))
3736biimpa 462 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) → (((𝐹𝑁) + 𝑁) + 1) ≤ 𝑞)
3828, 37eqbrtrd 4808 . . . . . . . . . 10 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) → (((𝐹𝑁) + 1) + 𝑁) ≤ 𝑞)
3938expcom 398 . . . . . . . . 9 (((𝐹𝑁) + 𝑁) < 𝑞 → (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (((𝐹𝑁) + 1) + 𝑁) ≤ 𝑞))
4039adantl 467 . . . . . . . 8 ((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) → (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (((𝐹𝑁) + 1) + 𝑁) ≤ 𝑞))
4140imp 393 . . . . . . 7 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → (((𝐹𝑁) + 1) + 𝑁) ≤ 𝑞)
42 df-2 11281 . . . . . . . . . . . . . . . . 17 2 = (1 + 1)
4342a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 2 = (1 + 1))
4443oveq2d 6809 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐹𝑁) + 2) = ((𝐹𝑁) + (1 + 1)))
4523, 24, 24addassd 10264 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐹𝑁) + 1) + 1) = ((𝐹𝑁) + (1 + 1)))
4644, 45eqtr4d 2808 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝑁) + 2) = (((𝐹𝑁) + 1) + 1))
4746adantr 466 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → ((𝐹𝑁) + 2) = (((𝐹𝑁) + 1) + 1))
4847breq2d 4798 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → (𝑝 < ((𝐹𝑁) + 2) ↔ 𝑝 < (((𝐹𝑁) + 1) + 1)))
49 prmz 15596 . . . . . . . . . . . . . 14 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
5029peano2zd 11687 . . . . . . . . . . . . . 14 (𝜑 → ((𝐹𝑁) + 1) ∈ ℤ)
51 zleltp1 11630 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℤ ∧ ((𝐹𝑁) + 1) ∈ ℤ) → (𝑝 ≤ ((𝐹𝑁) + 1) ↔ 𝑝 < (((𝐹𝑁) + 1) + 1)))
5249, 50, 51syl2anr 584 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → (𝑝 ≤ ((𝐹𝑁) + 1) ↔ 𝑝 < (((𝐹𝑁) + 1) + 1)))
5352biimprd 238 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → (𝑝 < (((𝐹𝑁) + 1) + 1) → 𝑝 ≤ ((𝐹𝑁) + 1)))
5448, 53sylbid 230 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (𝑝 < ((𝐹𝑁) + 2) → 𝑝 ≤ ((𝐹𝑁) + 1)))
5554adantr 466 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → (𝑝 < ((𝐹𝑁) + 2) → 𝑝 ≤ ((𝐹𝑁) + 1)))
5655com12 32 . . . . . . . . 9 (𝑝 < ((𝐹𝑁) + 2) → (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑝 ≤ ((𝐹𝑁) + 1)))
5756adantr 466 . . . . . . . 8 ((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) → (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑝 ≤ ((𝐹𝑁) + 1)))
5857imp 393 . . . . . . 7 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 𝑝 ≤ ((𝐹𝑁) + 1))
593, 7, 11, 22, 41, 58lesub3d 10847 . . . . . 6 (((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) ∧ ((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ)) → 𝑁 ≤ (𝑞𝑝))
6059ex 397 . . . . 5 ((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞) → (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑁 ≤ (𝑞𝑝)))
61603adant3 1126 . . . 4 ((𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ) → (((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) → 𝑁 ≤ (𝑞𝑝)))
6261impcom 394 . . 3 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)) → 𝑁 ≤ (𝑞𝑝))
63 simpr3 1237 . . 3 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)) → ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)
6462, 63jca 501 . 2 ((((𝜑𝑝 ∈ ℙ) ∧ 𝑞 ∈ ℙ) ∧ (𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)) → (𝑁 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ))
65 prmgaplem7.i . . 3 (𝜑 → ∀𝑖 ∈ (2...𝑁)1 < (((𝐹𝑁) + 𝑖) gcd 𝑖))
668, 12, 65prmgaplem7 15968 . 2 (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 < ((𝐹𝑁) + 2) ∧ ((𝐹𝑁) + 𝑁) < 𝑞 ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ))
6764, 66reximddv2 3168 1 (𝜑 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wnel 3046  wral 3061  wrex 3062   class class class wbr 4786  wf 6027  cfv 6031  (class class class)co 6793  𝑚 cmap 8009  cr 10137  1c1 10139   + caddc 10141   < clt 10276  cle 10277  cmin 10468  cn 11222  2c2 11272  cz 11579  ...cfz 12533  ..^cfzo 12673   gcd cgcd 15424  cprime 15592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-fac 13265  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-dvds 15190  df-gcd 15425  df-prm 15593
This theorem is referenced by:  prmgap  15970  prmgaplcm  15971  prmgapprmo  15973
  Copyright terms: Public domain W3C validator