MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplem3 Structured version   Visualization version   GIF version

Theorem prmgaplem3 15970
Description: Lemma for prmgap 15976. (Contributed by AV, 9-Aug-2020.)
Hypothesis
Ref Expression
prmgaplem3.a 𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁}
Assertion
Ref Expression
prmgaplem3 (𝑁 ∈ (ℤ‘3) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑁,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝑁(𝑥,𝑦)

Proof of Theorem prmgaplem3
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3833 . . . . 5 {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℙ
21a1i 11 . . . 4 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℙ)
3 prmssnn 15603 . . . . 5 ℙ ⊆ ℕ
4 nnssre 11224 . . . . 5 ℕ ⊆ ℝ
53, 4sstri 3758 . . . 4 ℙ ⊆ ℝ
62, 5syl6ss 3761 . . 3 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℝ)
7 fzofi 12980 . . . 4 (0..^𝑁) ∈ Fin
8 breq1 4786 . . . . . . 7 (𝑝 = 𝑖 → (𝑝 < 𝑁𝑖 < 𝑁))
98elrab 3512 . . . . . 6 (𝑖 ∈ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ↔ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁))
10 prmnn 15601 . . . . . . . . . 10 (𝑖 ∈ ℙ → 𝑖 ∈ ℕ)
1110nnnn0d 11551 . . . . . . . . 9 (𝑖 ∈ ℙ → 𝑖 ∈ ℕ0)
1211ad2antrl 763 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁)) → 𝑖 ∈ ℕ0)
13 eluzge3nn 11931 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
1413adantr 473 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁)) → 𝑁 ∈ ℕ)
15 simprr 810 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁)) → 𝑖 < 𝑁)
16 elfzo0 12716 . . . . . . . 8 (𝑖 ∈ (0..^𝑁) ↔ (𝑖 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑖 < 𝑁))
1712, 14, 15, 16syl3anbrc 1426 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑖 ∈ ℙ ∧ 𝑖 < 𝑁)) → 𝑖 ∈ (0..^𝑁))
1817ex 448 . . . . . 6 (𝑁 ∈ (ℤ‘3) → ((𝑖 ∈ ℙ ∧ 𝑖 < 𝑁) → 𝑖 ∈ (0..^𝑁)))
199, 18syl5bi 232 . . . . 5 (𝑁 ∈ (ℤ‘3) → (𝑖 ∈ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → 𝑖 ∈ (0..^𝑁)))
2019ssrdv 3755 . . . 4 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ (0..^𝑁))
21 ssfi 8334 . . . 4 (((0..^𝑁) ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ (0..^𝑁)) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin)
227, 20, 21sylancr 695 . . 3 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin)
23 2prm 15618 . . . . . 6 2 ∈ ℙ
2423a1i 11 . . . . 5 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℙ)
25 eluz2 11893 . . . . . 6 (𝑁 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁))
26 df-3 11280 . . . . . . . . . 10 3 = (2 + 1)
2726breq1i 4790 . . . . . . . . 9 (3 ≤ 𝑁 ↔ (2 + 1) ≤ 𝑁)
28 2z 11609 . . . . . . . . . . 11 2 ∈ ℤ
29 zltp1le 11627 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 < 𝑁 ↔ (2 + 1) ≤ 𝑁))
3028, 29mpan 705 . . . . . . . . . 10 (𝑁 ∈ ℤ → (2 < 𝑁 ↔ (2 + 1) ≤ 𝑁))
3130biimprd 238 . . . . . . . . 9 (𝑁 ∈ ℤ → ((2 + 1) ≤ 𝑁 → 2 < 𝑁))
3227, 31syl5bi 232 . . . . . . . 8 (𝑁 ∈ ℤ → (3 ≤ 𝑁 → 2 < 𝑁))
3332imp 443 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁)
34333adant1 1122 . . . . . 6 ((3 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 3 ≤ 𝑁) → 2 < 𝑁)
3525, 34sylbi 207 . . . . 5 (𝑁 ∈ (ℤ‘3) → 2 < 𝑁)
36 breq1 4786 . . . . . 6 (𝑝 = 2 → (𝑝 < 𝑁 ↔ 2 < 𝑁))
3736elrab 3512 . . . . 5 (2 ∈ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ↔ (2 ∈ ℙ ∧ 2 < 𝑁))
3824, 35, 37sylanbrc 698 . . . 4 (𝑁 ∈ (ℤ‘3) → 2 ∈ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁})
39 ne0i 4066 . . . 4 (2 ∈ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ≠ ∅)
4038, 39syl 17 . . 3 (𝑁 ∈ (ℤ‘3) → {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ≠ ∅)
41 prmgaplem3.a . . . 4 𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁}
42 sseq1 3772 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → (𝐴 ⊆ ℝ ↔ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℝ))
43 eleq1 2836 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → (𝐴 ∈ Fin ↔ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin))
44 neeq1 3003 . . . . 5 (𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → (𝐴 ≠ ∅ ↔ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ≠ ∅))
4542, 43, 443anbi123d 1545 . . . 4 (𝐴 = {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} → ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ↔ ({𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℝ ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ≠ ∅)))
4641, 45ax-mp 5 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ↔ ({𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ⊆ ℝ ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝 < 𝑁} ≠ ∅))
476, 22, 40, 46syl3anbrc 1426 . 2 (𝑁 ∈ (ℤ‘3) → (𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅))
48 fimaxre 11168 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
4947, 48syl 17 1 (𝑁 ∈ (ℤ‘3) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1069   = wceq 1629  wcel 2143  wne 2941  wral 3059  wrex 3060  {crab 3063  wss 3720  c0 4060   class class class wbr 4783  cfv 6030  (class class class)co 6791  Fincfn 8107  cr 10135  0cc0 10136  1c1 10137   + caddc 10139   < clt 10274  cle 10275  cn 11220  2c2 11270  3c3 11271  0cn0 11492  cz 11577  cuz 11887  ..^cfzo 12672  cprime 15598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2145  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749  ax-sep 4911  ax-nul 4919  ax-pow 4970  ax-pr 5033  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1070  df-3an 1071  df-tru 1632  df-ex 1851  df-nf 1856  df-sb 2048  df-eu 2620  df-mo 2621  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-ne 2942  df-nel 3045  df-ral 3064  df-rex 3065  df-reu 3066  df-rmo 3067  df-rab 3068  df-v 3350  df-sbc 3585  df-csb 3680  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-pss 3736  df-nul 4061  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4572  df-iun 4653  df-br 4784  df-opab 4844  df-mpt 4861  df-tr 4884  df-id 5156  df-eprel 5161  df-po 5169  df-so 5170  df-fr 5207  df-we 5209  df-xp 5254  df-rel 5255  df-cnv 5256  df-co 5257  df-dm 5258  df-rn 5259  df-res 5260  df-ima 5261  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-er 7894  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-sup 8502  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-n0 11493  df-z 11578  df-uz 11888  df-rp 12035  df-fz 12533  df-fzo 12673  df-seq 13009  df-exp 13068  df-cj 14050  df-re 14051  df-im 14052  df-sqrt 14186  df-abs 14187  df-dvds 15195  df-prm 15599
This theorem is referenced by:  prmgaplem5  15972
  Copyright terms: Public domain W3C validator