![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmexpb | Structured version Visualization version GIF version |
Description: Two positive prime powers are equal iff the primes and the powers are equal. (Contributed by Paul Chapman, 30-Nov-2012.) |
Ref | Expression |
---|---|
prmexpb | ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃↑𝑀) = (𝑄↑𝑁) ↔ (𝑃 = 𝑄 ∧ 𝑀 = 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmz 15596 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
2 | 1 | adantr 466 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑃 ∈ ℤ) |
3 | 2 | 3ad2ant1 1127 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑃 ∈ ℤ) |
4 | simp2l 1241 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑀 ∈ ℕ) | |
5 | iddvdsexp 15214 | . . . . . 6 ⊢ ((𝑃 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑃 ∥ (𝑃↑𝑀)) | |
6 | 3, 4, 5 | syl2anc 573 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑃 ∥ (𝑃↑𝑀)) |
7 | breq2 4790 | . . . . . . 7 ⊢ ((𝑃↑𝑀) = (𝑄↑𝑁) → (𝑃 ∥ (𝑃↑𝑀) ↔ 𝑃 ∥ (𝑄↑𝑁))) | |
8 | 7 | 3ad2ant3 1129 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → (𝑃 ∥ (𝑃↑𝑀) ↔ 𝑃 ∥ (𝑄↑𝑁))) |
9 | simp1l 1239 | . . . . . . 7 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑃 ∈ ℙ) | |
10 | simp1r 1240 | . . . . . . 7 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑄 ∈ ℙ) | |
11 | simp2r 1242 | . . . . . . 7 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑁 ∈ ℕ) | |
12 | prmdvdsexpb 15635 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝑄↑𝑁) ↔ 𝑃 = 𝑄)) | |
13 | 9, 10, 11, 12 | syl3anc 1476 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → (𝑃 ∥ (𝑄↑𝑁) ↔ 𝑃 = 𝑄)) |
14 | 8, 13 | bitrd 268 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → (𝑃 ∥ (𝑃↑𝑀) ↔ 𝑃 = 𝑄)) |
15 | 6, 14 | mpbid 222 | . . . 4 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑃 = 𝑄) |
16 | 3 | zred 11684 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑃 ∈ ℝ) |
17 | 4 | nnzd 11683 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑀 ∈ ℤ) |
18 | 11 | nnzd 11683 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑁 ∈ ℤ) |
19 | prmgt1 15616 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) | |
20 | 19 | ad2antrr 705 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 1 < 𝑃) |
21 | 20 | 3adant3 1126 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 1 < 𝑃) |
22 | simp3 1132 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → (𝑃↑𝑀) = (𝑄↑𝑁)) | |
23 | 15 | oveq1d 6808 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → (𝑃↑𝑁) = (𝑄↑𝑁)) |
24 | 22, 23 | eqtr4d 2808 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → (𝑃↑𝑀) = (𝑃↑𝑁)) |
25 | 16, 17, 18, 21, 24 | expcand 13247 | . . . 4 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → 𝑀 = 𝑁) |
26 | 15, 25 | jca 501 | . . 3 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃↑𝑀) = (𝑄↑𝑁)) → (𝑃 = 𝑄 ∧ 𝑀 = 𝑁)) |
27 | 26 | 3expia 1114 | . 2 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃↑𝑀) = (𝑄↑𝑁) → (𝑃 = 𝑄 ∧ 𝑀 = 𝑁))) |
28 | oveq12 6802 | . 2 ⊢ ((𝑃 = 𝑄 ∧ 𝑀 = 𝑁) → (𝑃↑𝑀) = (𝑄↑𝑁)) | |
29 | 27, 28 | impbid1 215 | 1 ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃↑𝑀) = (𝑄↑𝑁) ↔ (𝑃 = 𝑄 ∧ 𝑀 = 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 class class class wbr 4786 (class class class)co 6793 1c1 10139 < clt 10276 ℕcn 11222 ℤcz 11579 ↑cexp 13067 ∥ cdvds 15189 ℙcprime 15592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8504 df-inf 8505 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-fl 12801 df-mod 12877 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-dvds 15190 df-gcd 15425 df-prm 15593 |
This theorem is referenced by: fsumvma 25159 |
Copyright terms: Public domain | W3C validator |