Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmdvdsfmtnof1lem1 Structured version   Visualization version   GIF version

Theorem prmdvdsfmtnof1lem1 41821
Description: Lemma 1 for prmdvdsfmtnof1 41824. (Contributed by AV, 3-Aug-2021.)
Hypotheses
Ref Expression
prmdvdsfmtnof1lem1.i 𝐼 = inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < )
prmdvdsfmtnof1lem1.j 𝐽 = inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < )
Assertion
Ref Expression
prmdvdsfmtnof1lem1 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)))
Distinct variable groups:   𝐹,𝑝   𝐺,𝑝
Allowed substitution hints:   𝐼(𝑝)   𝐽(𝑝)

Proof of Theorem prmdvdsfmtnof1lem1
StepHypRef Expression
1 ltso 10156 . . . 4 < Or ℝ
21a1i 11 . . 3 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → < Or ℝ)
3 eluz2nn 11764 . . . . 5 (𝐹 ∈ (ℤ‘2) → 𝐹 ∈ ℕ)
43adantr 480 . . . 4 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → 𝐹 ∈ ℕ)
5 prmdvdsfi 24878 . . . 4 (𝐹 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐹} ∈ Fin)
64, 5syl 17 . . 3 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → {𝑝 ∈ ℙ ∣ 𝑝𝐹} ∈ Fin)
7 exprmfct 15463 . . . . 5 (𝐹 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝐹)
87adantr 480 . . . 4 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → ∃𝑝 ∈ ℙ 𝑝𝐹)
9 rabn0 3991 . . . 4 ({𝑝 ∈ ℙ ∣ 𝑝𝐹} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝𝐹)
108, 9sylibr 224 . . 3 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → {𝑝 ∈ ℙ ∣ 𝑝𝐹} ≠ ∅)
11 ssrab2 3720 . . . . 5 {𝑝 ∈ ℙ ∣ 𝑝𝐹} ⊆ ℙ
12 prmssnn 15437 . . . . . 6 ℙ ⊆ ℕ
13 nnssre 11062 . . . . . 6 ℕ ⊆ ℝ
1412, 13sstri 3645 . . . . 5 ℙ ⊆ ℝ
1511, 14sstri 3645 . . . 4 {𝑝 ∈ ℙ ∣ 𝑝𝐹} ⊆ ℝ
1615a1i 11 . . 3 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → {𝑝 ∈ ℙ ∣ 𝑝𝐹} ⊆ ℝ)
17 fiinfcl 8448 . . 3 (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝𝐹} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐹} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐹} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹})
182, 6, 10, 16, 17syl13anc 1368 . 2 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹})
19 prmdvdsfmtnof1lem1.i . . . 4 𝐼 = inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < )
2019eleq1i 2721 . . 3 (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} ↔ inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹})
21 eluz2nn 11764 . . . . . . 7 (𝐺 ∈ (ℤ‘2) → 𝐺 ∈ ℕ)
2221adantl 481 . . . . . 6 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → 𝐺 ∈ ℕ)
23 prmdvdsfi 24878 . . . . . 6 (𝐺 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝐺} ∈ Fin)
2422, 23syl 17 . . . . 5 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → {𝑝 ∈ ℙ ∣ 𝑝𝐺} ∈ Fin)
25 exprmfct 15463 . . . . . . 7 (𝐺 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝐺)
2625adantl 481 . . . . . 6 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → ∃𝑝 ∈ ℙ 𝑝𝐺)
27 rabn0 3991 . . . . . 6 ({𝑝 ∈ ℙ ∣ 𝑝𝐺} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝𝐺)
2826, 27sylibr 224 . . . . 5 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → {𝑝 ∈ ℙ ∣ 𝑝𝐺} ≠ ∅)
29 ssrab2 3720 . . . . . . 7 {𝑝 ∈ ℙ ∣ 𝑝𝐺} ⊆ ℙ
3029, 14sstri 3645 . . . . . 6 {𝑝 ∈ ℙ ∣ 𝑝𝐺} ⊆ ℝ
3130a1i 11 . . . . 5 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → {𝑝 ∈ ℙ ∣ 𝑝𝐺} ⊆ ℝ)
32 fiinfcl 8448 . . . . 5 (( < Or ℝ ∧ ({𝑝 ∈ ℙ ∣ 𝑝𝐺} ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐺} ≠ ∅ ∧ {𝑝 ∈ ℙ ∣ 𝑝𝐺} ⊆ ℝ)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺})
332, 24, 28, 31, 32syl13anc 1368 . . . 4 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺})
34 prmdvdsfmtnof1lem1.j . . . . . 6 𝐽 = inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < )
3534eleq1i 2721 . . . . 5 (𝐽 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺} ↔ inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺})
36 nfrab1 3152 . . . . . . . . . 10 𝑝{𝑝 ∈ ℙ ∣ 𝑝𝐺}
37 nfcv 2793 . . . . . . . . . 10 𝑝
38 nfcv 2793 . . . . . . . . . 10 𝑝 <
3936, 37, 38nfinf 8429 . . . . . . . . 9 𝑝inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < )
4034, 39nfcxfr 2791 . . . . . . . 8 𝑝𝐽
41 nfcv 2793 . . . . . . . 8 𝑝
42 nfcv 2793 . . . . . . . . 9 𝑝
43 nfcv 2793 . . . . . . . . 9 𝑝𝐺
4440, 42, 43nfbr 4732 . . . . . . . 8 𝑝 𝐽𝐺
45 breq1 4688 . . . . . . . 8 (𝑝 = 𝐽 → (𝑝𝐺𝐽𝐺))
4640, 41, 44, 45elrabf 3392 . . . . . . 7 (𝐽 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺} ↔ (𝐽 ∈ ℙ ∧ 𝐽𝐺))
47 nfrab1 3152 . . . . . . . . . . 11 𝑝{𝑝 ∈ ℙ ∣ 𝑝𝐹}
4847, 37, 38nfinf 8429 . . . . . . . . . 10 𝑝inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < )
4919, 48nfcxfr 2791 . . . . . . . . 9 𝑝𝐼
50 nfcv 2793 . . . . . . . . . 10 𝑝𝐹
5149, 42, 50nfbr 4732 . . . . . . . . 9 𝑝 𝐼𝐹
52 breq1 4688 . . . . . . . . 9 (𝑝 = 𝐼 → (𝑝𝐹𝐼𝐹))
5349, 41, 51, 52elrabf 3392 . . . . . . . 8 (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} ↔ (𝐼 ∈ ℙ ∧ 𝐼𝐹))
54 simp2l 1107 . . . . . . . . . 10 (((𝐽 ∈ ℙ ∧ 𝐽𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹) ∧ 𝐼 = 𝐽) → 𝐼 ∈ ℙ)
55 simp2r 1108 . . . . . . . . . 10 (((𝐽 ∈ ℙ ∧ 𝐽𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹) ∧ 𝐼 = 𝐽) → 𝐼𝐹)
56 simp1r 1106 . . . . . . . . . . 11 (((𝐽 ∈ ℙ ∧ 𝐽𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹) ∧ 𝐼 = 𝐽) → 𝐽𝐺)
57 breq1 4688 . . . . . . . . . . . 12 (𝐼 = 𝐽 → (𝐼𝐺𝐽𝐺))
58573ad2ant3 1104 . . . . . . . . . . 11 (((𝐽 ∈ ℙ ∧ 𝐽𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹) ∧ 𝐼 = 𝐽) → (𝐼𝐺𝐽𝐺))
5956, 58mpbird 247 . . . . . . . . . 10 (((𝐽 ∈ ℙ ∧ 𝐽𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹) ∧ 𝐼 = 𝐽) → 𝐼𝐺)
6054, 55, 593jca 1261 . . . . . . . . 9 (((𝐽 ∈ ℙ ∧ 𝐽𝐺) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹) ∧ 𝐼 = 𝐽) → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺))
61603exp 1283 . . . . . . . 8 ((𝐽 ∈ ℙ ∧ 𝐽𝐺) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹) → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺))))
6253, 61syl5bi 232 . . . . . . 7 ((𝐽 ∈ ℙ ∧ 𝐽𝐺) → (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺))))
6346, 62sylbi 207 . . . . . 6 (𝐽 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺} → (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺))))
6463a1i 11 . . . . 5 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (𝐽 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺} → (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)))))
6535, 64syl5bir 233 . . . 4 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝐺}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐺} → (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)))))
6633, 65mpd 15 . . 3 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (𝐼 ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺))))
6720, 66syl5bir 233 . 2 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝐹}, ℝ, < ) ∈ {𝑝 ∈ ℙ ∣ 𝑝𝐹} → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺))))
6818, 67mpd 15 1 ((𝐹 ∈ (ℤ‘2) ∧ 𝐺 ∈ (ℤ‘2)) → (𝐼 = 𝐽 → (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wrex 2942  {crab 2945  wss 3607  c0 3948   class class class wbr 4685   Or wor 5063  cfv 5926  Fincfn 7997  infcinf 8388  cr 9973   < clt 10112  cn 11058  2c2 11108  cuz 11725  cdvds 15027  cprime 15432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-prm 15433
This theorem is referenced by:  prmdvdsfmtnof1  41824
  Copyright terms: Public domain W3C validator