MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdiv Structured version   Visualization version   GIF version

Theorem prmdiv 15613
Description: Show an explicit expression for the modular inverse of 𝐴 mod 𝑃. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
prmdiv.1 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)
Assertion
Ref Expression
prmdiv ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))

Proof of Theorem prmdiv
StepHypRef Expression
1 nprmdvds1 15541 . . . . . 6 (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1)
213ad2ant1 1125 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ¬ 𝑃 ∥ 1)
3 prmnn 15511 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
433ad2ant1 1125 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℕ)
5 simp2 1129 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝐴 ∈ ℤ)
6 prmz 15512 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
763ad2ant1 1125 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℤ)
8 gcdcom 15358 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝐴 gcd 𝑃) = (𝑃 gcd 𝐴))
95, 7, 8syl2anc 696 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 gcd 𝑃) = (𝑃 gcd 𝐴))
10 coprm 15546 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (¬ 𝑃𝐴 ↔ (𝑃 gcd 𝐴) = 1))
1110biimp3a 1545 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 gcd 𝐴) = 1)
129, 11eqtrd 2758 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 gcd 𝑃) = 1)
13 eulerth 15611 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑃) = 1) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
144, 5, 12, 13syl3anc 1439 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃))
15 phiprm 15605 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → (ϕ‘𝑃) = (𝑃 − 1))
16153ad2ant1 1125 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) = (𝑃 − 1))
17 nnm1nn0 11447 . . . . . . . . . . . . . 14 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
184, 17syl 17 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − 1) ∈ ℕ0)
1916, 18eqeltrd 2803 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) ∈ ℕ0)
20 zexpcl 12990 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (ϕ‘𝑃) ∈ ℕ0) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
215, 19, 20syl2anc 696 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) ∈ ℤ)
22 1zzd 11521 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 1 ∈ ℤ)
23 moddvds 15114 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ (𝐴↑(ϕ‘𝑃)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1)))
244, 21, 22, 23syl3anc 1439 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (((𝐴↑(ϕ‘𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1)))
2514, 24mpbid 222 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1))
26 prmuz2 15531 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
27263ad2ant1 1125 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ (ℤ‘2))
28 uznn0sub 11833 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℤ‘2) → (𝑃 − 2) ∈ ℕ0)
2927, 28syl 17 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − 2) ∈ ℕ0)
30 zexpcl 12990 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
315, 29, 30syl2anc 696 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
3231zred 11595 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(𝑃 − 2)) ∈ ℝ)
3332, 4nndivred 11182 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 2)) / 𝑃) ∈ ℝ)
3433flcld 12714 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)) ∈ ℤ)
355, 34zmulcld 11601 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))) ∈ ℤ)
36 dvdsmul1 15126 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))) ∈ ℤ) → 𝑃 ∥ (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
377, 35, 36syl2anc 696 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∥ (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
38 1z 11520 . . . . . . . . . . 11 1 ∈ ℤ
39 zsubcl 11532 . . . . . . . . . . 11 (((𝐴↑(ϕ‘𝑃)) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐴↑(ϕ‘𝑃)) − 1) ∈ ℤ)
4021, 38, 39sylancl 697 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) − 1) ∈ ℤ)
417, 35zmulcld 11601 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))) ∈ ℤ)
42 dvds2sub 15139 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ ((𝐴↑(ϕ‘𝑃)) − 1) ∈ ℤ ∧ (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))) ∈ ℤ) → ((𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1) ∧ 𝑃 ∥ (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))) → 𝑃 ∥ (((𝐴↑(ϕ‘𝑃)) − 1) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))))
437, 40, 41, 42syl3anc 1439 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝑃 ∥ ((𝐴↑(ϕ‘𝑃)) − 1) ∧ 𝑃 ∥ (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))) → 𝑃 ∥ (((𝐴↑(ϕ‘𝑃)) − 1) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))))
4425, 37, 43mp2and 717 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∥ (((𝐴↑(ϕ‘𝑃)) − 1) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
455zcnd 11596 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝐴 ∈ ℂ)
4631zcnd 11596 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(𝑃 − 2)) ∈ ℂ)
477, 34zmulcld 11601 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))) ∈ ℤ)
4847zcnd 11596 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))) ∈ ℂ)
4945, 46, 48subdid 10599 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))) = ((𝐴 · (𝐴↑(𝑃 − 2))) − (𝐴 · (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
50 prmdiv.1 . . . . . . . . . . . . 13 𝑅 = ((𝐴↑(𝑃 − 2)) mod 𝑃)
514nnrpd 11984 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℝ+)
52 modval 12785 . . . . . . . . . . . . . 14 (((𝐴↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
5332, 51, 52syl2anc 696 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
5450, 53syl5eq 2770 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑅 = ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
5554oveq2d 6781 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · 𝑅) = (𝐴 · ((𝐴↑(𝑃 − 2)) − (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
56 2m1e1 11248 . . . . . . . . . . . . . . . . 17 (2 − 1) = 1
5756oveq2i 6776 . . . . . . . . . . . . . . . 16 (𝑃 − (2 − 1)) = (𝑃 − 1)
5816, 57syl6eqr 2776 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) = (𝑃 − (2 − 1)))
594nncnd 11149 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∈ ℂ)
60 2cnd 11206 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 2 ∈ ℂ)
61 1cnd 10169 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 1 ∈ ℂ)
6259, 60, 61subsubd 10533 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − (2 − 1)) = ((𝑃 − 2) + 1))
6358, 62eqtrd 2758 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (ϕ‘𝑃) = ((𝑃 − 2) + 1))
6463oveq2d 6781 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) = (𝐴↑((𝑃 − 2) + 1)))
6545, 29expp1d 13124 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑((𝑃 − 2) + 1)) = ((𝐴↑(𝑃 − 2)) · 𝐴))
6646, 45mulcomd 10174 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 2)) · 𝐴) = (𝐴 · (𝐴↑(𝑃 − 2))))
6764, 65, 663eqtrd 2762 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) = (𝐴 · (𝐴↑(𝑃 − 2))))
6834zcnd 11596 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)) ∈ ℂ)
6959, 45, 68mul12d 10358 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))) = (𝐴 · (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))))
7067, 69oveq12d 6783 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(ϕ‘𝑃)) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))) = ((𝐴 · (𝐴↑(𝑃 − 2))) − (𝐴 · (𝑃 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
7149, 55, 703eqtr4d 2768 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · 𝑅) = ((𝐴↑(ϕ‘𝑃)) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
7271oveq1d 6780 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴 · 𝑅) − 1) = (((𝐴↑(ϕ‘𝑃)) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))) − 1))
7321zcnd 11596 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴↑(ϕ‘𝑃)) ∈ ℂ)
7441zcnd 11596 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃)))) ∈ ℂ)
7573, 74, 61sub32d 10537 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (((𝐴↑(ϕ‘𝑃)) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))) − 1) = (((𝐴↑(ϕ‘𝑃)) − 1) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
7672, 75eqtrd 2758 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴 · 𝑅) − 1) = (((𝐴↑(ϕ‘𝑃)) − 1) − (𝑃 · (𝐴 · (⌊‘((𝐴↑(𝑃 − 2)) / 𝑃))))))
7744, 76breqtrrd 4788 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑃 ∥ ((𝐴 · 𝑅) − 1))
78 oveq2 6773 . . . . . . . . 9 (𝑅 = 0 → (𝐴 · 𝑅) = (𝐴 · 0))
7978oveq1d 6780 . . . . . . . 8 (𝑅 = 0 → ((𝐴 · 𝑅) − 1) = ((𝐴 · 0) − 1))
8079breq2d 4772 . . . . . . 7 (𝑅 = 0 → (𝑃 ∥ ((𝐴 · 𝑅) − 1) ↔ 𝑃 ∥ ((𝐴 · 0) − 1)))
8177, 80syl5ibcom 235 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 = 0 → 𝑃 ∥ ((𝐴 · 0) − 1)))
8245mul01d 10348 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝐴 · 0) = 0)
8382oveq1d 6780 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴 · 0) − 1) = (0 − 1))
84 df-neg 10382 . . . . . . . . 9 -1 = (0 − 1)
8583, 84syl6eqr 2776 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴 · 0) − 1) = -1)
8685breq2d 4772 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 ∥ ((𝐴 · 0) − 1) ↔ 𝑃 ∥ -1))
87 dvdsnegb 15122 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑃 ∥ 1 ↔ 𝑃 ∥ -1))
887, 38, 87sylancl 697 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 ∥ 1 ↔ 𝑃 ∥ -1))
8986, 88bitr4d 271 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 ∥ ((𝐴 · 0) − 1) ↔ 𝑃 ∥ 1))
9081, 89sylibd 229 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 = 0 → 𝑃 ∥ 1))
912, 90mtod 189 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ¬ 𝑅 = 0)
92 zmodfz 12807 . . . . . . . 8 (((𝐴↑(𝑃 − 2)) ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (0...(𝑃 − 1)))
9331, 4, 92syl2anc 696 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (0...(𝑃 − 1)))
9450, 93syl5eqel 2807 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑅 ∈ (0...(𝑃 − 1)))
95 nn0uz 11836 . . . . . . . 8 0 = (ℤ‘0)
9618, 95syl6eleq 2813 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑃 − 1) ∈ (ℤ‘0))
97 elfzp12 12533 . . . . . . 7 ((𝑃 − 1) ∈ (ℤ‘0) → (𝑅 ∈ (0...(𝑃 − 1)) ↔ (𝑅 = 0 ∨ 𝑅 ∈ ((0 + 1)...(𝑃 − 1)))))
9896, 97syl 17 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (0...(𝑃 − 1)) ↔ (𝑅 = 0 ∨ 𝑅 ∈ ((0 + 1)...(𝑃 − 1)))))
9994, 98mpbid 222 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 = 0 ∨ 𝑅 ∈ ((0 + 1)...(𝑃 − 1))))
10099ord 391 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (¬ 𝑅 = 0 → 𝑅 ∈ ((0 + 1)...(𝑃 − 1))))
10191, 100mpd 15 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑅 ∈ ((0 + 1)...(𝑃 − 1)))
102 1e0p1 11665 . . . 4 1 = (0 + 1)
103102oveq1i 6775 . . 3 (1...(𝑃 − 1)) = ((0 + 1)...(𝑃 − 1))
104101, 103syl6eleqr 2814 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 𝑅 ∈ (1...(𝑃 − 1)))
105104, 77jca 555 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (𝑅 ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝐴 · 𝑅) − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1596  wcel 2103   class class class wbr 4760  cfv 6001  (class class class)co 6765  cr 10048  0cc0 10049  1c1 10050   + caddc 10052   · cmul 10054  cmin 10379  -cneg 10380   / cdiv 10797  cn 11133  2c2 11183  0cn0 11405  cz 11490  cuz 11800  +crp 11946  ...cfz 12440  cfl 12706   mod cmo 12783  cexp 12975  cdvds 15103   gcd cgcd 15339  cprime 15508  ϕcphi 15592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-oadd 7684  df-er 7862  df-map 7976  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-sup 8464  df-inf 8465  df-card 8878  df-cda 9103  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-n0 11406  df-xnn0 11477  df-z 11491  df-uz 11801  df-rp 11947  df-fz 12441  df-fzo 12581  df-fl 12708  df-mod 12784  df-seq 12917  df-exp 12976  df-hash 13233  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-dvds 15104  df-gcd 15340  df-prm 15509  df-phi 15594
This theorem is referenced by:  prmdiveq  15614  prmdivdiv  15615  modprminv  15627  wilthlem2  24915  wilthlem3  24916
  Copyright terms: Public domain W3C validator