![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prinfzo0 | Structured version Visualization version GIF version |
Description: The intersection of a half-open integer range and the pair of its outer left borders is empty. (Contributed by AV, 9-Jan-2021.) |
Ref | Expression |
---|---|
prinfzo0 | ⊢ (𝑀 ∈ ℤ → ({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz3 12558 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀)) | |
2 | fznuz 12629 | . . . . . 6 ⊢ (𝑀 ∈ (𝑀...𝑀) → ¬ 𝑀 ∈ (ℤ≥‘(𝑀 + 1))) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ ℤ → ¬ 𝑀 ∈ (ℤ≥‘(𝑀 + 1))) |
4 | 3 | 3mix1d 1420 | . . . 4 ⊢ (𝑀 ∈ ℤ → (¬ 𝑀 ∈ (ℤ≥‘(𝑀 + 1)) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁)) |
5 | 3ianor 1096 | . . . . 5 ⊢ (¬ (𝑀 ∈ (ℤ≥‘(𝑀 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ↔ (¬ 𝑀 ∈ (ℤ≥‘(𝑀 + 1)) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁)) | |
6 | elfzo2 12681 | . . . . 5 ⊢ (𝑀 ∈ ((𝑀 + 1)..^𝑁) ↔ (𝑀 ∈ (ℤ≥‘(𝑀 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁)) | |
7 | 5, 6 | xchnxbir 322 | . . . 4 ⊢ (¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁) ↔ (¬ 𝑀 ∈ (ℤ≥‘(𝑀 + 1)) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁)) |
8 | 4, 7 | sylibr 224 | . . 3 ⊢ (𝑀 ∈ ℤ → ¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁)) |
9 | incom 3956 | . . . . 5 ⊢ ({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = (((𝑀 + 1)..^𝑁) ∩ {𝑀}) | |
10 | 9 | eqeq1i 2776 | . . . 4 ⊢ (({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (((𝑀 + 1)..^𝑁) ∩ {𝑀}) = ∅) |
11 | disjsn 4384 | . . . 4 ⊢ ((((𝑀 + 1)..^𝑁) ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁)) | |
12 | 10, 11 | bitri 264 | . . 3 ⊢ (({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ ¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁)) |
13 | 8, 12 | sylibr 224 | . 2 ⊢ (𝑀 ∈ ℤ → ({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅) |
14 | fzonel 12691 | . . . 4 ⊢ ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁) | |
15 | 14 | a1i 11 | . . 3 ⊢ (𝑀 ∈ ℤ → ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁)) |
16 | incom 3956 | . . . . 5 ⊢ ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = (((𝑀 + 1)..^𝑁) ∩ {𝑁}) | |
17 | 16 | eqeq1i 2776 | . . . 4 ⊢ (({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (((𝑀 + 1)..^𝑁) ∩ {𝑁}) = ∅) |
18 | disjsn 4384 | . . . 4 ⊢ ((((𝑀 + 1)..^𝑁) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁)) | |
19 | 17, 18 | bitri 264 | . . 3 ⊢ (({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁)) |
20 | 15, 19 | sylibr 224 | . 2 ⊢ (𝑀 ∈ ℤ → ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅) |
21 | df-pr 4320 | . . . . 5 ⊢ {𝑀, 𝑁} = ({𝑀} ∪ {𝑁}) | |
22 | 21 | ineq1i 3961 | . . . 4 ⊢ ({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = (({𝑀} ∪ {𝑁}) ∩ ((𝑀 + 1)..^𝑁)) |
23 | 22 | eqeq1i 2776 | . . 3 ⊢ (({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (({𝑀} ∪ {𝑁}) ∩ ((𝑀 + 1)..^𝑁)) = ∅) |
24 | undisj1 4173 | . . 3 ⊢ ((({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ∧ ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅) ↔ (({𝑀} ∪ {𝑁}) ∩ ((𝑀 + 1)..^𝑁)) = ∅) | |
25 | 23, 24 | bitr4i 267 | . 2 ⊢ (({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ∧ ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅)) |
26 | 13, 20, 25 | sylanbrc 572 | 1 ⊢ (𝑀 ∈ ℤ → ({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 ∨ w3o 1070 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∪ cun 3721 ∩ cin 3722 ∅c0 4063 {csn 4317 {cpr 4319 class class class wbr 4787 ‘cfv 6030 (class class class)co 6796 1c1 10143 + caddc 10145 < clt 10280 ℤcz 11584 ℤ≥cuz 11893 ...cfz 12533 ..^cfzo 12673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-n0 11500 df-z 11585 df-uz 11894 df-fz 12534 df-fzo 12674 |
This theorem is referenced by: spthispth 26857 |
Copyright terms: Public domain | W3C validator |