![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prime | Structured version Visualization version GIF version |
Description: Two ways to express "𝐴 is a prime number (or 1)." See also isprm 15594. (Contributed by NM, 4-May-2005.) |
Ref | Expression |
---|---|
prime | ⊢ (𝐴 ∈ ℕ → (∀𝑥 ∈ ℕ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi2.04 375 | . . . 4 ⊢ ((𝑥 ≠ 1 → ((𝐴 / 𝑥) ∈ ℕ → 𝑥 = 𝐴)) ↔ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 ≠ 1 → 𝑥 = 𝐴))) | |
2 | impexp 437 | . . . 4 ⊢ (((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴) ↔ (𝑥 ≠ 1 → ((𝐴 / 𝑥) ∈ ℕ → 𝑥 = 𝐴))) | |
3 | neor 3034 | . . . . 5 ⊢ ((𝑥 = 1 ∨ 𝑥 = 𝐴) ↔ (𝑥 ≠ 1 → 𝑥 = 𝐴)) | |
4 | 3 | imbi2i 325 | . . . 4 ⊢ (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 ≠ 1 → 𝑥 = 𝐴))) |
5 | 1, 2, 4 | 3bitr4ri 293 | . . 3 ⊢ (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)) |
6 | nngt1ne1 11249 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → (1 < 𝑥 ↔ 𝑥 ≠ 1)) | |
7 | 6 | adantl 467 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (1 < 𝑥 ↔ 𝑥 ≠ 1)) |
8 | 7 | anbi1d 615 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((1 < 𝑥 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ))) |
9 | nnz 11601 | . . . . . . . . 9 ⊢ ((𝐴 / 𝑥) ∈ ℕ → (𝐴 / 𝑥) ∈ ℤ) | |
10 | nnre 11229 | . . . . . . . . . . . . 13 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℝ) | |
11 | gtndiv 11656 | . . . . . . . . . . . . . 14 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℕ ∧ 𝐴 < 𝑥) → ¬ (𝐴 / 𝑥) ∈ ℤ) | |
12 | 11 | 3expia 1114 | . . . . . . . . . . . . 13 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (𝐴 < 𝑥 → ¬ (𝐴 / 𝑥) ∈ ℤ)) |
13 | 10, 12 | sylan 569 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴 < 𝑥 → ¬ (𝐴 / 𝑥) ∈ ℤ)) |
14 | 13 | con2d 131 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℤ → ¬ 𝐴 < 𝑥)) |
15 | nnre 11229 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
16 | lenlt 10318 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥)) | |
17 | 10, 15, 16 | syl2an 583 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥)) |
18 | 14, 17 | sylibrd 249 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℤ → 𝑥 ≤ 𝐴)) |
19 | 18 | ancoms 455 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℤ → 𝑥 ≤ 𝐴)) |
20 | 9, 19 | syl5 34 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ → 𝑥 ≤ 𝐴)) |
21 | 20 | pm4.71rd 552 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ ↔ (𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ))) |
22 | 21 | anbi2d 614 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((1 < 𝑥 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥 ∧ (𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ)))) |
23 | 3anass 1080 | . . . . . 6 ⊢ ((1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥 ∧ (𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ))) | |
24 | 22, 23 | syl6bbr 278 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((1 < 𝑥 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ))) |
25 | 8, 24 | bitr3d 270 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ))) |
26 | 25 | imbi1d 330 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴) ↔ ((1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) |
27 | 5, 26 | syl5bb 272 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) |
28 | 27 | ralbidva 3134 | 1 ⊢ (𝐴 ∈ ℕ → (∀𝑥 ∈ ℕ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 ∨ wo 836 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∀wral 3061 class class class wbr 4786 (class class class)co 6793 ℝcr 10137 1c1 10139 < clt 10276 ≤ cle 10277 / cdiv 10886 ℕcn 11222 ℤcz 11579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-n0 11495 df-z 11580 |
This theorem is referenced by: infpnlem1 15821 |
Copyright terms: Public domain | W3C validator |