Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridlc Structured version   Visualization version   GIF version

Theorem pridlc 34175
Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.)
Hypotheses
Ref Expression
ispridlc.1 𝐺 = (1st𝑅)
ispridlc.2 𝐻 = (2nd𝑅)
ispridlc.3 𝑋 = ran 𝐺
Assertion
Ref Expression
pridlc (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (𝐴𝑃𝐵𝑃))

Proof of Theorem pridlc
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ispridlc.1 . . . . 5 𝐺 = (1st𝑅)
2 ispridlc.2 . . . . 5 𝐻 = (2nd𝑅)
3 ispridlc.3 . . . . 5 𝑋 = ran 𝐺
41, 2, 3ispridlc 34174 . . . 4 (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
54biimpa 502 . . 3 ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃𝑋 ∧ ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
65simp3d 1138 . 2 ((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → ∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))
7 oveq1 6812 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎𝐻𝑏) = (𝐴𝐻𝑏))
87eleq1d 2816 . . . . . . 7 (𝑎 = 𝐴 → ((𝑎𝐻𝑏) ∈ 𝑃 ↔ (𝐴𝐻𝑏) ∈ 𝑃))
9 eleq1 2819 . . . . . . . 8 (𝑎 = 𝐴 → (𝑎𝑃𝐴𝑃))
109orbi1d 741 . . . . . . 7 (𝑎 = 𝐴 → ((𝑎𝑃𝑏𝑃) ↔ (𝐴𝑃𝑏𝑃)))
118, 10imbi12d 333 . . . . . 6 (𝑎 = 𝐴 → (((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) ↔ ((𝐴𝐻𝑏) ∈ 𝑃 → (𝐴𝑃𝑏𝑃))))
12 oveq2 6813 . . . . . . . 8 (𝑏 = 𝐵 → (𝐴𝐻𝑏) = (𝐴𝐻𝐵))
1312eleq1d 2816 . . . . . . 7 (𝑏 = 𝐵 → ((𝐴𝐻𝑏) ∈ 𝑃 ↔ (𝐴𝐻𝐵) ∈ 𝑃))
14 eleq1 2819 . . . . . . . 8 (𝑏 = 𝐵 → (𝑏𝑃𝐵𝑃))
1514orbi2d 740 . . . . . . 7 (𝑏 = 𝐵 → ((𝐴𝑃𝑏𝑃) ↔ (𝐴𝑃𝐵𝑃)))
1613, 15imbi12d 333 . . . . . 6 (𝑏 = 𝐵 → (((𝐴𝐻𝑏) ∈ 𝑃 → (𝐴𝑃𝑏𝑃)) ↔ ((𝐴𝐻𝐵) ∈ 𝑃 → (𝐴𝑃𝐵𝑃))))
1711, 16rspc2v 3453 . . . . 5 ((𝐴𝑋𝐵𝑋) → (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ((𝐴𝐻𝐵) ∈ 𝑃 → (𝐴𝑃𝐵𝑃))))
1817com12 32 . . . 4 (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → ((𝐴𝑋𝐵𝑋) → ((𝐴𝐻𝐵) ∈ 𝑃 → (𝐴𝑃𝐵𝑃))))
1918expd 451 . . 3 (∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) → (𝐴𝑋 → (𝐵𝑋 → ((𝐴𝐻𝐵) ∈ 𝑃 → (𝐴𝑃𝐵𝑃)))))
20193imp2 1440 . 2 ((∀𝑎𝑋𝑏𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (𝐴𝑃𝐵𝑃))
216, 20sylan 489 1 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (𝐴𝑃𝐵𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383  w3a 1072   = wceq 1624  wcel 2131  wne 2924  wral 3042  ran crn 5259  cfv 6041  (class class class)co 6805  1st c1st 7323  2nd c2nd 7324  CRingOpsccring 34097  Idlcidl 34111  PrIdlcpridl 34112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-1st 7325  df-2nd 7326  df-grpo 27648  df-gid 27649  df-ginv 27650  df-ablo 27700  df-ass 33947  df-exid 33949  df-mgmOLD 33953  df-sgrOLD 33965  df-mndo 33971  df-rngo 33999  df-com2 34094  df-crngo 34098  df-idl 34114  df-pridl 34115  df-igen 34164
This theorem is referenced by:  pridlc2  34176
  Copyright terms: Public domain W3C validator