![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prid2 | Structured version Visualization version GIF version |
Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Note: the proof from prid2g 4440 and ax-mp 5 has one fewer essential step but one more total step.) (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
prid2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
prid2 | ⊢ 𝐵 ∈ {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prid2.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | prid1 4441 | . 2 ⊢ 𝐵 ∈ {𝐵, 𝐴} |
3 | prcom 4411 | . 2 ⊢ {𝐵, 𝐴} = {𝐴, 𝐵} | |
4 | 2, 3 | eleqtri 2837 | 1 ⊢ 𝐵 ∈ {𝐴, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2139 Vcvv 3340 {cpr 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-un 3720 df-sn 4322 df-pr 4324 |
This theorem is referenced by: prel12OLD 4527 opi2 5086 opeluu 5087 opthwiener 5124 dmrnssfld 5539 funopg 6083 2dom 8194 dfac2b 9143 dfac2OLD 9145 brdom7disj 9545 brdom6disj 9546 cnelprrecn 10221 mnfxr 10288 m1expcl2 13076 hash2prb 13446 pr2pwpr 13453 sadcf 15377 xpsfrnel2 16427 setcepi 16939 grpss 17641 efgi1 18334 frgpuptinv 18384 dmdprdpr 18648 dprdpr 18649 cnmsgnsubg 20125 m2detleiblem6 20634 m2detleiblem3 20637 m2detleiblem4 20638 m2detleib 20639 indiscld 21097 xpstopnlem1 21814 xpstopnlem2 21816 i1f1lem 23655 i1f1 23656 aannenlem2 24283 taylthlem2 24327 ppiublem2 25127 lgsdir2lem3 25251 ecgrtg 26062 elntg 26063 usgr2trlncl 26866 umgrwwlks2on 27078 wlk2v2e 27309 eulerpathpr 27392 ex-br 27599 ex-eprel 27601 subfacp1lem3 31471 kur14lem7 31501 fprb 31976 sltres 32121 noextendgt 32129 nolesgn2ores 32131 nosepnelem 32136 nosepdmlem 32139 nolt02o 32151 nosupno 32155 nosupbnd1lem3 32162 nosupbnd1 32166 nosupbnd2lem1 32167 onpsstopbas 32735 onint1 32754 bj-inftyexpidisj 33408 kelac2 38137 fvrcllb1d 38489 relexp1idm 38508 corcltrcl 38533 cotrclrcl 38536 clsk1indlem1 38845 refsum2cnlem1 39695 limsup10exlem 40507 fourierdlem103 40929 fourierdlem104 40930 ioorrnopn 41028 ioorrnopnxr 41030 zlmodzxzscm 42645 zlmodzxzldeplem3 42801 nn0sumshdiglemB 42924 |
Copyright terms: Public domain | W3C validator |