![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prid1g | Structured version Visualization version GIF version |
Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
Ref | Expression |
---|---|
prid1g | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | orci 404 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵) |
3 | elprg 4341 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐴, 𝐵} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵))) | |
4 | 2, 3 | mpbiri 248 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 = wceq 1632 ∈ wcel 2139 {cpr 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-un 3720 df-sn 4322 df-pr 4324 |
This theorem is referenced by: prid2g 4440 prid1 4441 prnzg 4454 preq1b 4522 prel12g 4544 elpreqprb 4548 prproe 4586 opth1 5092 fr2nr 5244 fpr2g 6639 f1prex 6702 fveqf1o 6720 pw2f1olem 8229 hashprdifel 13378 gcdcllem3 15425 mgm2nsgrplem1 17606 mgm2nsgrplem2 17607 mgm2nsgrplem3 17608 sgrp2nmndlem1 17611 sgrp2rid2 17614 pmtrprfv 18073 pptbas 21014 coseq0negpitopi 24454 uhgr2edg 26299 umgrvad2edg 26304 uspgr2v1e2w 26342 usgr2v1e2w 26343 nbusgredgeu0 26468 nbusgrf1o0 26469 nb3grprlem1 26480 nb3grprlem2 26481 vtxduhgr0nedg 26598 1hegrvtxdg1 26613 1egrvtxdg1 26615 umgr2v2evd2 26633 vdegp1bi 26643 ftc1anclem8 33805 kelac2 38137 fourierdlem54 40880 sge0pr 41114 imarnf1pr 41809 fmtnoprmfac2lem1 41988 1hegrlfgr 42223 |
Copyright terms: Public domain | W3C validator |