![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prfi | Structured version Visualization version GIF version |
Description: An unordered pair is finite. (Contributed by NM, 22-Aug-2008.) |
Ref | Expression |
---|---|
prfi | ⊢ {𝐴, 𝐵} ∈ Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4213 | . 2 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
2 | snfi 8079 | . . 3 ⊢ {𝐴} ∈ Fin | |
3 | snfi 8079 | . . 3 ⊢ {𝐵} ∈ Fin | |
4 | unfi 8268 | . . 3 ⊢ (({𝐴} ∈ Fin ∧ {𝐵} ∈ Fin) → ({𝐴} ∪ {𝐵}) ∈ Fin) | |
5 | 2, 3, 4 | mp2an 708 | . 2 ⊢ ({𝐴} ∪ {𝐵}) ∈ Fin |
6 | 1, 5 | eqeltri 2726 | 1 ⊢ {𝐴, 𝐵} ∈ Fin |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2030 ∪ cun 3605 {csn 4210 {cpr 4212 Fincfn 7997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-fin 8001 |
This theorem is referenced by: tpfi 8277 fiint 8278 inelfi 8365 tskpr 9630 hashpw 13261 hashfun 13262 pr2pwpr 13299 hashtpg 13305 sumpr 14521 lcmfpr 15387 prmreclem2 15668 acsfn2 16371 isdrs2 16986 symg2hash 17863 psgnprfval 17987 znidomb 19958 m2detleib 20485 ovolioo 23382 i1f1 23502 itgioo 23627 limcun 23704 aannenlem2 24129 wilthlem2 24840 perfectlem2 25000 upgrex 26032 ex-hash 27440 prodpr 29700 inelpisys 30345 coinfliplem 30668 coinflippv 30673 subfacp1lem1 31287 poimirlem9 33548 kelac2lem 37951 sumpair 39508 refsum2cnlem1 39510 climxlim2lem 40389 ibliooicc 40505 fourierdlem50 40691 fourierdlem51 40692 fourierdlem54 40695 fourierdlem70 40711 fourierdlem71 40712 fourierdlem76 40717 fourierdlem102 40743 fourierdlem103 40744 fourierdlem104 40745 fourierdlem114 40755 saluncl 40855 sge0pr 40929 meadjun 40997 omeunle 41051 perfectALTVlem2 41956 zlmodzxzel 42458 gsumpr 42464 ldepspr 42587 zlmodzxzldeplem2 42615 |
Copyright terms: Public domain | W3C validator |