![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > preqsn | Structured version Visualization version GIF version |
Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) (Proof shortened by JJ, 23-Jul-2021.) |
Ref | Expression |
---|---|
preqsn.1 | ⊢ 𝐴 ∈ V |
preqsn.2 | ⊢ 𝐵 ∈ V |
preqsn.3 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
preqsn | ⊢ ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4223 | . . 3 ⊢ {𝐶} = {𝐶, 𝐶} | |
2 | 1 | eqeq2i 2663 | . 2 ⊢ ({𝐴, 𝐵} = {𝐶} ↔ {𝐴, 𝐵} = {𝐶, 𝐶}) |
3 | oridm 535 | . . 3 ⊢ (((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) | |
4 | preqsn.1 | . . . 4 ⊢ 𝐴 ∈ V | |
5 | preqsn.2 | . . . 4 ⊢ 𝐵 ∈ V | |
6 | preqsn.3 | . . . 4 ⊢ 𝐶 ∈ V | |
7 | 4, 5, 6, 6 | preq12b 4413 | . . 3 ⊢ ({𝐴, 𝐵} = {𝐶, 𝐶} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) ∨ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) |
8 | eqeq2 2662 | . . . 4 ⊢ (𝐵 = 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 = 𝐶)) | |
9 | 8 | pm5.32ri 671 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) |
10 | 3, 7, 9 | 3bitr4i 292 | . 2 ⊢ ({𝐴, 𝐵} = {𝐶, 𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
11 | 2, 10 | bitri 264 | 1 ⊢ ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 {csn 4210 {cpr 4212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-un 3612 df-sn 4211 df-pr 4213 |
This theorem is referenced by: opeqsn 4996 propeqop 4999 propssopi 5000 relop 5305 hash2prde 13290 symg2bas 17864 |
Copyright terms: Public domain | W3C validator |