![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > preq12 | Structured version Visualization version GIF version |
Description: Equality theorem for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq12 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 4404 | . 2 ⊢ (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵}) | |
2 | preq2 4405 | . 2 ⊢ (𝐵 = 𝐷 → {𝐶, 𝐵} = {𝐶, 𝐷}) | |
3 | 1, 2 | sylan9eq 2806 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1624 {cpr 4315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-v 3334 df-un 3712 df-sn 4314 df-pr 4316 |
This theorem is referenced by: preq12i 4409 preq12d 4412 ssprsseq 4494 preq12b 4518 prnebg 4525 preq12nebg 4535 opthprneg 4537 snex 5049 relop 5420 opthreg 8678 opthregOLD 8680 hashle2pr 13443 wwlktovfo 13894 joinval 17198 meetval 17212 ipole 17351 sylow1 18210 frgpuplem 18377 uspgr2wlkeq 26744 wlkres 26769 wlkp1lem8 26779 usgr2pthlem 26861 2wlkdlem10 27047 1wlkdlem4 27284 3wlkdlem6 27309 3wlkdlem10 27313 imarnf1pr 41801 elsprel 42227 sprsymrelf1lem 42243 sprsymrelf 42247 |
Copyright terms: Public domain | W3C validator |