![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > preimaioomnf | Structured version Visualization version GIF version |
Description: Preimage of an open interval, unbounded below. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
preimaioomnf.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
preimaioomnf.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
preimaioomnf | ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preimaioomnf.1 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
2 | 1 | ffund 6087 | . . . 4 ⊢ (𝜑 → Fun 𝐹) |
3 | 1 | frnd 39740 | . . . 4 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
4 | fimacnvinrn2 6389 | . . . 4 ⊢ ((Fun 𝐹 ∧ ran 𝐹 ⊆ ℝ) → (◡𝐹 “ (-∞[,)𝐵)) = (◡𝐹 “ ((-∞[,)𝐵) ∩ ℝ))) | |
5 | 2, 3, 4 | syl2anc 694 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (-∞[,)𝐵)) = (◡𝐹 “ ((-∞[,)𝐵) ∩ ℝ))) |
6 | preimaioomnf.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
7 | 6 | icomnfinre 40097 | . . . 4 ⊢ (𝜑 → ((-∞[,)𝐵) ∩ ℝ) = (-∞(,)𝐵)) |
8 | 7 | imaeq2d 5501 | . . 3 ⊢ (𝜑 → (◡𝐹 “ ((-∞[,)𝐵) ∩ ℝ)) = (◡𝐹 “ (-∞(,)𝐵))) |
9 | 5, 8 | eqtr2d 2686 | . 2 ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝐵)) = (◡𝐹 “ (-∞[,)𝐵))) |
10 | 1 | frexr 39917 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
11 | 10, 6 | preimaicomnf 41243 | . 2 ⊢ (𝜑 → (◡𝐹 “ (-∞[,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) |
12 | 9, 11 | eqtrd 2685 | 1 ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝐵)) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 {crab 2945 ∩ cin 3606 ⊆ wss 3607 class class class wbr 4685 ◡ccnv 5142 ran crn 5144 “ cima 5146 Fun wfun 5920 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ℝcr 9973 -∞cmnf 10110 ℝ*cxr 10111 < clt 10112 (,)cioo 12213 [,)cico 12215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-pre-lttri 10048 ax-pre-lttrn 10049 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-ioo 12217 df-ico 12219 |
This theorem is referenced by: issmflem 41257 mbfresmf 41269 smfres 41318 smfco 41330 |
Copyright terms: Public domain | W3C validator |