Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  predpo Structured version   Visualization version   GIF version

Theorem predpo 5736
 Description: Property of the precessor class for partial orderings. (Contributed by Scott Fenton, 28-Apr-2012.)
Assertion
Ref Expression
predpo ((𝑅 Po 𝐴𝑋𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋)))

Proof of Theorem predpo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 predel 5735 . 2 (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝐴)
2 elpredg 5732 . . . . . . . . . . 11 ((𝑋𝐴𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋))
32adantll 750 . . . . . . . . . 10 (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑌𝑅𝑋))
4 potr 5076 . . . . . . . . . . . . . . . 16 ((𝑅 Po 𝐴 ∧ (𝑧𝐴𝑌𝐴𝑋𝐴)) → ((𝑧𝑅𝑌𝑌𝑅𝑋) → 𝑧𝑅𝑋))
543exp2 1307 . . . . . . . . . . . . . . 15 (𝑅 Po 𝐴 → (𝑧𝐴 → (𝑌𝐴 → (𝑋𝐴 → ((𝑧𝑅𝑌𝑌𝑅𝑋) → 𝑧𝑅𝑋)))))
65com24 95 . . . . . . . . . . . . . 14 (𝑅 Po 𝐴 → (𝑋𝐴 → (𝑌𝐴 → (𝑧𝐴 → ((𝑧𝑅𝑌𝑌𝑅𝑋) → 𝑧𝑅𝑋)))))
76imp31 447 . . . . . . . . . . . . 13 (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌𝐴) → (𝑧𝐴 → ((𝑧𝑅𝑌𝑌𝑅𝑋) → 𝑧𝑅𝑋)))
87com13 88 . . . . . . . . . . . 12 ((𝑧𝑅𝑌𝑌𝑅𝑋) → (𝑧𝐴 → (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌𝐴) → 𝑧𝑅𝑋)))
98ex 449 . . . . . . . . . . 11 (𝑧𝑅𝑌 → (𝑌𝑅𝑋 → (𝑧𝐴 → (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌𝐴) → 𝑧𝑅𝑋))))
109com14 96 . . . . . . . . . 10 (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌𝐴) → (𝑌𝑅𝑋 → (𝑧𝐴 → (𝑧𝑅𝑌𝑧𝑅𝑋))))
113, 10sylbid 230 . . . . . . . . 9 (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → (𝑧𝐴 → (𝑧𝑅𝑌𝑧𝑅𝑋))))
1211ex 449 . . . . . . . 8 ((𝑅 Po 𝐴𝑋𝐴) → (𝑌𝐴 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → (𝑧𝐴 → (𝑧𝑅𝑌𝑧𝑅𝑋)))))
1312com23 86 . . . . . . 7 ((𝑅 Po 𝐴𝑋𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → (𝑌𝐴 → (𝑧𝐴 → (𝑧𝑅𝑌𝑧𝑅𝑋)))))
14133imp 1275 . . . . . 6 (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ 𝑌𝐴) → (𝑧𝐴 → (𝑧𝑅𝑌𝑧𝑅𝑋)))
1514imdistand 728 . . . . 5 (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ 𝑌𝐴) → ((𝑧𝐴𝑧𝑅𝑌) → (𝑧𝐴𝑧𝑅𝑋)))
16 vex 3234 . . . . . . 7 𝑧 ∈ V
1716elpred 5731 . . . . . 6 (𝑌𝐴 → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑌) ↔ (𝑧𝐴𝑧𝑅𝑌)))
18173ad2ant3 1104 . . . . 5 (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ 𝑌𝐴) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑌) ↔ (𝑧𝐴𝑧𝑅𝑌)))
1916elpred 5731 . . . . . . 7 (𝑋𝐴 → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑧𝐴𝑧𝑅𝑋)))
2019adantl 481 . . . . . 6 ((𝑅 Po 𝐴𝑋𝐴) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑧𝐴𝑧𝑅𝑋)))
21203ad2ant1 1102 . . . . 5 (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ 𝑌𝐴) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑧𝐴𝑧𝑅𝑋)))
2215, 18, 213imtr4d 283 . . . 4 (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ 𝑌𝐴) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑌) → 𝑧 ∈ Pred(𝑅, 𝐴, 𝑋)))
2322ssrdv 3642 . . 3 (((𝑅 Po 𝐴𝑋𝐴) ∧ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ∧ 𝑌𝐴) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋))
24233exp 1283 . 2 ((𝑅 Po 𝐴𝑋𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → (𝑌𝐴 → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋))))
251, 24mpdi 45 1 ((𝑅 Po 𝐴𝑋𝐴) → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → Pred(𝑅, 𝐴, 𝑌) ⊆ Pred(𝑅, 𝐴, 𝑋)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   ∈ wcel 2030   ⊆ wss 3607   class class class wbr 4685   Po wpo 5062  Predcpred 5717 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-po 5064  df-xp 5149  df-cnv 5151  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718 This theorem is referenced by:  predso  5737  trpredpo  31859
 Copyright terms: Public domain W3C validator