![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predfrirr | Structured version Visualization version GIF version |
Description: Given a well-founded relationship, 𝑋 is not a member of its predecessor class. (Contributed by Scott Fenton, 22-Apr-2011.) |
Ref | Expression |
---|---|
predfrirr | ⊢ (𝑅 Fr 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frirr 5120 | . . . . 5 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑋 ∈ 𝐴) → ¬ 𝑋𝑅𝑋) | |
2 | elpredg 5732 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑋𝑅𝑋)) | |
3 | 2 | anidms 678 | . . . . . 6 ⊢ (𝑋 ∈ 𝐴 → (𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ 𝑋𝑅𝑋)) |
4 | 3 | notbid 307 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ ¬ 𝑋𝑅𝑋)) |
5 | 1, 4 | syl5ibr 236 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → ((𝑅 Fr 𝐴 ∧ 𝑋 ∈ 𝐴) → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))) |
6 | 5 | expd 451 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (𝑅 Fr 𝐴 → (𝑋 ∈ 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)))) |
7 | 6 | pm2.43b 55 | . 2 ⊢ (𝑅 Fr 𝐴 → (𝑋 ∈ 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋))) |
8 | predel 5735 | . . 3 ⊢ (𝑋 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑋 ∈ 𝐴) | |
9 | 8 | con3i 150 | . 2 ⊢ (¬ 𝑋 ∈ 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)) |
10 | 7, 9 | pm2.61d1 171 | 1 ⊢ (𝑅 Fr 𝐴 → ¬ 𝑋 ∈ Pred(𝑅, 𝐴, 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2030 class class class wbr 4685 Fr wfr 5099 Predcpred 5717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-fr 5102 df-xp 5149 df-cnv 5151 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 |
This theorem is referenced by: wfrlem14 7473 |
Copyright terms: Public domain | W3C validator |