MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predeq2 Structured version   Visualization version   GIF version

Theorem predeq2 5826
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
predeq2 (𝐴 = 𝐵 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋))

Proof of Theorem predeq2
StepHypRef Expression
1 eqid 2771 . 2 𝑅 = 𝑅
2 eqid 2771 . 2 𝑋 = 𝑋
3 predeq123 5824 . 2 ((𝑅 = 𝑅𝐴 = 𝐵𝑋 = 𝑋) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋))
41, 2, 3mp3an13 1563 1 (𝐴 = 𝐵 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  Predcpred 5822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-br 4787  df-opab 4847  df-xp 5255  df-cnv 5257  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823
This theorem is referenced by:  wrecseq123  7560  wfrlem5  7572  prednn  12670  prednn0  12671  trpredeq2  32057  frmin  32079  frrlem5  32121
  Copyright terms: Public domain W3C validator