![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
predeq1 | ⊢ (𝑅 = 𝑆 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐴, 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . 2 ⊢ 𝐴 = 𝐴 | |
2 | eqid 2760 | . 2 ⊢ 𝑋 = 𝑋 | |
3 | predeq123 5842 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐴 ∧ 𝑋 = 𝑋) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐴, 𝑋)) | |
4 | 1, 2, 3 | mp3an23 1565 | 1 ⊢ (𝑅 = 𝑆 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐴, 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 Predcpred 5840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-xp 5272 df-cnv 5274 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 |
This theorem is referenced by: wrecseq123 7578 trpredeq1 32046 |
Copyright terms: Public domain | W3C validator |