MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predeq1 Structured version   Visualization version   GIF version

Theorem predeq1 5843
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
predeq1 (𝑅 = 𝑆 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐴, 𝑋))

Proof of Theorem predeq1
StepHypRef Expression
1 eqid 2760 . 2 𝐴 = 𝐴
2 eqid 2760 . 2 𝑋 = 𝑋
3 predeq123 5842 . 2 ((𝑅 = 𝑆𝐴 = 𝐴𝑋 = 𝑋) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐴, 𝑋))
41, 2, 3mp3an23 1565 1 (𝑅 = 𝑆 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐴, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  Predcpred 5840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-opab 4865  df-xp 5272  df-cnv 5274  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841
This theorem is referenced by:  wrecseq123  7578  trpredeq1  32046
  Copyright terms: Public domain W3C validator