MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preddowncl Structured version   Visualization version   GIF version

Theorem preddowncl 5745
Description: A property of classes that are downward closed under predecessor. (Contributed by Scott Fenton, 13-Apr-2011.)
Assertion
Ref Expression
preddowncl ((𝐵𝐴 ∧ ∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) → (𝑋𝐵 → Pred(𝑅, 𝐵, 𝑋) = Pred(𝑅, 𝐴, 𝑋)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem preddowncl
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2718 . . . . 5 (𝑦 = 𝑋 → (𝑦𝐵𝑋𝐵))
2 predeq3 5722 . . . . . 6 (𝑦 = 𝑋 → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐵, 𝑋))
3 predeq3 5722 . . . . . 6 (𝑦 = 𝑋 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑋))
42, 3eqeq12d 2666 . . . . 5 (𝑦 = 𝑋 → (Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐴, 𝑦) ↔ Pred(𝑅, 𝐵, 𝑋) = Pred(𝑅, 𝐴, 𝑋)))
51, 4imbi12d 333 . . . 4 (𝑦 = 𝑋 → ((𝑦𝐵 → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐴, 𝑦)) ↔ (𝑋𝐵 → Pred(𝑅, 𝐵, 𝑋) = Pred(𝑅, 𝐴, 𝑋))))
65imbi2d 329 . . 3 (𝑦 = 𝑋 → (((𝐵𝐴 ∧ ∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) → (𝑦𝐵 → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐴, 𝑦))) ↔ ((𝐵𝐴 ∧ ∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) → (𝑋𝐵 → Pred(𝑅, 𝐵, 𝑋) = Pred(𝑅, 𝐴, 𝑋)))))
7 predpredss 5724 . . . . . 6 (𝐵𝐴 → Pred(𝑅, 𝐵, 𝑦) ⊆ Pred(𝑅, 𝐴, 𝑦))
87ad2antrr 762 . . . . 5 (((𝐵𝐴 ∧ ∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) ∧ 𝑦𝐵) → Pred(𝑅, 𝐵, 𝑦) ⊆ Pred(𝑅, 𝐴, 𝑦))
9 predeq3 5722 . . . . . . . . . . . 12 (𝑥 = 𝑦 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑦))
109sseq1d 3665 . . . . . . . . . . 11 (𝑥 = 𝑦 → (Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵 ↔ Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵))
1110rspccva 3339 . . . . . . . . . 10 ((∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵𝑦𝐵) → Pred(𝑅, 𝐴, 𝑦) ⊆ 𝐵)
1211sseld 3635 . . . . . . . . 9 ((∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵𝑦𝐵) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → 𝑧𝐵))
13 vex 3234 . . . . . . . . . . 11 𝑦 ∈ V
1413elpredim 5730 . . . . . . . . . 10 (𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → 𝑧𝑅𝑦)
1514a1i 11 . . . . . . . . 9 ((∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵𝑦𝐵) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → 𝑧𝑅𝑦))
1612, 15jcad 554 . . . . . . . 8 ((∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵𝑦𝐵) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → (𝑧𝐵𝑧𝑅𝑦)))
17 vex 3234 . . . . . . . . . . 11 𝑧 ∈ V
1817elpred 5731 . . . . . . . . . 10 (𝑦𝐵 → (𝑧 ∈ Pred(𝑅, 𝐵, 𝑦) ↔ (𝑧𝐵𝑧𝑅𝑦)))
1918imbi2d 329 . . . . . . . . 9 (𝑦𝐵 → ((𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → 𝑧 ∈ Pred(𝑅, 𝐵, 𝑦)) ↔ (𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → (𝑧𝐵𝑧𝑅𝑦))))
2019adantl 481 . . . . . . . 8 ((∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵𝑦𝐵) → ((𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → 𝑧 ∈ Pred(𝑅, 𝐵, 𝑦)) ↔ (𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → (𝑧𝐵𝑧𝑅𝑦))))
2116, 20mpbird 247 . . . . . . 7 ((∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵𝑦𝐵) → (𝑧 ∈ Pred(𝑅, 𝐴, 𝑦) → 𝑧 ∈ Pred(𝑅, 𝐵, 𝑦)))
2221ssrdv 3642 . . . . . 6 ((∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵𝑦𝐵) → Pred(𝑅, 𝐴, 𝑦) ⊆ Pred(𝑅, 𝐵, 𝑦))
2322adantll 750 . . . . 5 (((𝐵𝐴 ∧ ∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) ∧ 𝑦𝐵) → Pred(𝑅, 𝐴, 𝑦) ⊆ Pred(𝑅, 𝐵, 𝑦))
248, 23eqssd 3653 . . . 4 (((𝐵𝐴 ∧ ∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) ∧ 𝑦𝐵) → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐴, 𝑦))
2524ex 449 . . 3 ((𝐵𝐴 ∧ ∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) → (𝑦𝐵 → Pred(𝑅, 𝐵, 𝑦) = Pred(𝑅, 𝐴, 𝑦)))
266, 25vtoclg 3297 . 2 (𝑋𝐵 → ((𝐵𝐴 ∧ ∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) → (𝑋𝐵 → Pred(𝑅, 𝐵, 𝑋) = Pred(𝑅, 𝐴, 𝑋))))
2726pm2.43b 55 1 ((𝐵𝐴 ∧ ∀𝑥𝐵 Pred(𝑅, 𝐴, 𝑥) ⊆ 𝐵) → (𝑋𝐵 → Pred(𝑅, 𝐵, 𝑋) = Pred(𝑅, 𝐴, 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  wss 3607   class class class wbr 4685  Predcpred 5717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-xp 5149  df-cnv 5151  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718
This theorem is referenced by:  wfrlem4  7463  frrlem4  31908
  Copyright terms: Public domain W3C validator