Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  predbrg Structured version   Visualization version   GIF version

Theorem predbrg 5843
 Description: Closed form of elpredim 5835. (Contributed by Scott Fenton, 13-Apr-2011.) (Revised by NM, 5-Apr-2016.)
Assertion
Ref Expression
predbrg ((𝑋𝑉𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌𝑅𝑋)

Proof of Theorem predbrg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 predeq3 5827 . . . . 5 (𝑥 = 𝑋 → Pred(𝑅, 𝐴, 𝑥) = Pred(𝑅, 𝐴, 𝑋))
21eleq2d 2836 . . . 4 (𝑥 = 𝑋 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑥) ↔ 𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)))
3 breq2 4790 . . . 4 (𝑥 = 𝑋 → (𝑌𝑅𝑥𝑌𝑅𝑋))
42, 3imbi12d 333 . . 3 (𝑥 = 𝑋 → ((𝑌 ∈ Pred(𝑅, 𝐴, 𝑥) → 𝑌𝑅𝑥) ↔ (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝑅𝑋)))
5 vex 3354 . . . 4 𝑥 ∈ V
65elpredim 5835 . . 3 (𝑌 ∈ Pred(𝑅, 𝐴, 𝑥) → 𝑌𝑅𝑥)
74, 6vtoclg 3417 . 2 (𝑋𝑉 → (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝑅𝑋))
87imp 393 1 ((𝑋𝑉𝑌 ∈ Pred(𝑅, 𝐴, 𝑋)) → 𝑌𝑅𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145   class class class wbr 4786  Predcpred 5822 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-br 4787  df-opab 4847  df-xp 5255  df-cnv 5257  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator