![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pred0 | Structured version Visualization version GIF version |
Description: The predecessor class over ∅ is always ∅. (Contributed by Scott Fenton, 16-Apr-2011.) (Proof shortened by AV, 11-Jun-2021.) |
Ref | Expression |
---|---|
pred0 | ⊢ Pred(𝑅, ∅, 𝑋) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred 5823 | . 2 ⊢ Pred(𝑅, ∅, 𝑋) = (∅ ∩ (◡𝑅 “ {𝑋})) | |
2 | 0in 4113 | . 2 ⊢ (∅ ∩ (◡𝑅 “ {𝑋})) = ∅ | |
3 | 1, 2 | eqtri 2793 | 1 ⊢ Pred(𝑅, ∅, 𝑋) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∩ cin 3722 ∅c0 4063 {csn 4316 ◡ccnv 5248 “ cima 5252 Predcpred 5822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-v 3353 df-dif 3726 df-in 3730 df-nul 4064 df-pred 5823 |
This theorem is referenced by: trpred0 32072 |
Copyright terms: Public domain | W3C validator |