Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsmet Structured version   Visualization version   GIF version

Theorem prdsmet 22222
 Description: The product metric is a metric when the index set is finite. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
prdsmet.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsmet.b 𝐵 = (Base‘𝑌)
prdsmet.v 𝑉 = (Base‘𝑅)
prdsmet.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
prdsmet.d 𝐷 = (dist‘𝑌)
prdsmet.s (𝜑𝑆𝑊)
prdsmet.i (𝜑𝐼 ∈ Fin)
prdsmet.r ((𝜑𝑥𝐼) → 𝑅𝑍)
prdsmet.m ((𝜑𝑥𝐼) → 𝐸 ∈ (Met‘𝑉))
Assertion
Ref Expression
prdsmet (𝜑𝐷 ∈ (Met‘𝐵))
Distinct variable groups:   𝑥,𝐼   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem prdsmet
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsmet.y . . 3 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 prdsmet.b . . 3 𝐵 = (Base‘𝑌)
3 prdsmet.v . . 3 𝑉 = (Base‘𝑅)
4 prdsmet.e . . 3 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
5 prdsmet.d . . 3 𝐷 = (dist‘𝑌)
6 prdsmet.s . . 3 (𝜑𝑆𝑊)
7 prdsmet.i . . 3 (𝜑𝐼 ∈ Fin)
8 prdsmet.r . . 3 ((𝜑𝑥𝐼) → 𝑅𝑍)
9 prdsmet.m . . . 4 ((𝜑𝑥𝐼) → 𝐸 ∈ (Met‘𝑉))
10 metxmet 22186 . . . 4 (𝐸 ∈ (Met‘𝑉) → 𝐸 ∈ (∞Met‘𝑉))
119, 10syl 17 . . 3 ((𝜑𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
121, 2, 3, 4, 5, 6, 7, 8, 11prdsxmet 22221 . 2 (𝜑𝐷 ∈ (∞Met‘𝐵))
131, 2, 3, 4, 5, 6, 7, 8, 11prdsdsf 22219 . . . 4 (𝜑𝐷:(𝐵 × 𝐵)⟶(0[,]+∞))
14 ffn 6083 . . . 4 (𝐷:(𝐵 × 𝐵)⟶(0[,]+∞) → 𝐷 Fn (𝐵 × 𝐵))
1513, 14syl 17 . . 3 (𝜑𝐷 Fn (𝐵 × 𝐵))
166adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑆𝑊)
177adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝐼 ∈ Fin)
188ralrimiva 2995 . . . . . . 7 (𝜑 → ∀𝑥𝐼 𝑅𝑍)
1918adantr 480 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 𝑅𝑍)
20 simprl 809 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
21 simprr 811 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
221, 2, 16, 17, 19, 20, 21, 3, 4, 5prdsdsval3 16192 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) = sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ))
231, 2, 16, 17, 19, 3, 20prdsbascl 16190 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉)
241, 2, 16, 17, 19, 3, 21prdsbascl 16190 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉)
25 r19.26 3093 . . . . . . . . . . 11 (∀𝑥𝐼 ((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) ↔ (∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉 ∧ ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉))
26 metcl 22184 . . . . . . . . . . . . . . 15 ((𝐸 ∈ (Met‘𝑉) ∧ (𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
27263expib 1287 . . . . . . . . . . . . . 14 (𝐸 ∈ (Met‘𝑉) → (((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
289, 27syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → (((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
2928ralimdva 2991 . . . . . . . . . . . 12 (𝜑 → (∀𝑥𝐼 ((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
3029adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (∀𝑥𝐼 ((𝑓𝑥) ∈ 𝑉 ∧ (𝑔𝑥) ∈ 𝑉) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
3125, 30syl5bir 233 . . . . . . . . . 10 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ((∀𝑥𝐼 (𝑓𝑥) ∈ 𝑉 ∧ ∀𝑥𝐼 (𝑔𝑥) ∈ 𝑉) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ))
3223, 24, 31mp2and 715 . . . . . . . . 9 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ)
33 eqid 2651 . . . . . . . . . 10 (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) = (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥)))
3433fmpt 6421 . . . . . . . . 9 (∀𝑥𝐼 ((𝑓𝑥)𝐸(𝑔𝑥)) ∈ ℝ ↔ (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))):𝐼⟶ℝ)
3532, 34sylib 208 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))):𝐼⟶ℝ)
36 frn 6091 . . . . . . . 8 ((𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))):𝐼⟶ℝ → ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ⊆ ℝ)
3735, 36syl 17 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ⊆ ℝ)
38 0red 10079 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → 0 ∈ ℝ)
3938snssd 4372 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → {0} ⊆ ℝ)
4037, 39unssd 3822 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ)
41 xrltso 12012 . . . . . . . 8 < Or ℝ*
4241a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → < Or ℝ*)
43 mptfi 8306 . . . . . . . . 9 (𝐼 ∈ Fin → (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin)
44 rnfi 8290 . . . . . . . . 9 ((𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin → ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin)
4517, 43, 443syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin)
46 snfi 8079 . . . . . . . 8 {0} ∈ Fin
47 unfi 8268 . . . . . . . 8 ((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∈ Fin ∧ {0} ∈ Fin) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ∈ Fin)
4845, 46, 47sylancl 695 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ∈ Fin)
49 ssun2 3810 . . . . . . . . 9 {0} ⊆ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})
50 c0ex 10072 . . . . . . . . . 10 0 ∈ V
5150snss 4348 . . . . . . . . 9 (0 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ↔ {0} ⊆ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}))
5249, 51mpbir 221 . . . . . . . 8 0 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0})
53 ne0i 3954 . . . . . . . 8 (0 ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ≠ ∅)
5452, 53mp1i 13 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ≠ ∅)
55 ressxr 10121 . . . . . . . 8 ℝ ⊆ ℝ*
5640, 55syl6ss 3648 . . . . . . 7 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)
57 fisupcl 8416 . . . . . . 7 (( < Or ℝ* ∧ ((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ∈ Fin ∧ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ≠ ∅ ∧ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}) ⊆ ℝ*)) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}))
5842, 48, 54, 56, 57syl13anc 1368 . . . . . 6 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ∈ (ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}))
5940, 58sseldd 3637 . . . . 5 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)𝐸(𝑔𝑥))) ∪ {0}), ℝ*, < ) ∈ ℝ)
6022, 59eqeltrd 2730 . . . 4 ((𝜑 ∧ (𝑓𝐵𝑔𝐵)) → (𝑓𝐷𝑔) ∈ ℝ)
6160ralrimivva 3000 . . 3 (𝜑 → ∀𝑓𝐵𝑔𝐵 (𝑓𝐷𝑔) ∈ ℝ)
62 ffnov 6806 . . 3 (𝐷:(𝐵 × 𝐵)⟶ℝ ↔ (𝐷 Fn (𝐵 × 𝐵) ∧ ∀𝑓𝐵𝑔𝐵 (𝑓𝐷𝑔) ∈ ℝ))
6315, 61, 62sylanbrc 699 . 2 (𝜑𝐷:(𝐵 × 𝐵)⟶ℝ)
64 ismet2 22185 . 2 (𝐷 ∈ (Met‘𝐵) ↔ (𝐷 ∈ (∞Met‘𝐵) ∧ 𝐷:(𝐵 × 𝐵)⟶ℝ))
6512, 63, 64sylanbrc 699 1 (𝜑𝐷 ∈ (Met‘𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941   ∪ cun 3605   ⊆ wss 3607  ∅c0 3948  {csn 4210   ↦ cmpt 4762   Or wor 5063   × cxp 5141  ran crn 5144   ↾ cres 5145   Fn wfn 5921  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  Fincfn 7997  supcsup 8387  ℝcr 9973  0cc0 9974  +∞cpnf 10109  ℝ*cxr 10111   < clt 10112  [,]cicc 12216  Basecbs 15904  distcds 15997  Xscprds 16153  ∞Metcxmt 19779  Metcme 19780 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-icc 12220  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-prds 16155  df-xmet 19787  df-met 19788 This theorem is referenced by:  xpsmet  22234  prdsmslem1  22379  prdsbnd  33722  prdstotbnd  33723  prdsbnd2  33724  repwsmet  33763
 Copyright terms: Public domain W3C validator