MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdslmodd Structured version   Visualization version   GIF version

Theorem prdslmodd 19202
Description: The product of a family of left modules is a left module. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdslmodd.y 𝑌 = (𝑆Xs𝑅)
prdslmodd.s (𝜑𝑆 ∈ Ring)
prdslmodd.i (𝜑𝐼𝑉)
prdslmodd.rm (𝜑𝑅:𝐼⟶LMod)
prdslmodd.rs ((𝜑𝑦𝐼) → (Scalar‘(𝑅𝑦)) = 𝑆)
Assertion
Ref Expression
prdslmodd (𝜑𝑌 ∈ LMod)
Distinct variable groups:   𝑦,𝐼   𝜑,𝑦   𝑦,𝑅   𝑦,𝑆   𝑦,𝑌
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem prdslmodd
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2775 . 2 (𝜑 → (Base‘𝑌) = (Base‘𝑌))
2 eqidd 2775 . 2 (𝜑 → (+g𝑌) = (+g𝑌))
3 prdslmodd.y . . 3 𝑌 = (𝑆Xs𝑅)
4 prdslmodd.s . . 3 (𝜑𝑆 ∈ Ring)
5 prdslmodd.rm . . . 4 (𝜑𝑅:𝐼⟶LMod)
6 prdslmodd.i . . . 4 (𝜑𝐼𝑉)
7 fex 6652 . . . 4 ((𝑅:𝐼⟶LMod ∧ 𝐼𝑉) → 𝑅 ∈ V)
85, 6, 7syl2anc 574 . . 3 (𝜑𝑅 ∈ V)
93, 4, 8prdssca 16344 . 2 (𝜑𝑆 = (Scalar‘𝑌))
10 eqidd 2775 . 2 (𝜑 → ( ·𝑠𝑌) = ( ·𝑠𝑌))
11 eqidd 2775 . 2 (𝜑 → (Base‘𝑆) = (Base‘𝑆))
12 eqidd 2775 . 2 (𝜑 → (+g𝑆) = (+g𝑆))
13 eqidd 2775 . 2 (𝜑 → (.r𝑆) = (.r𝑆))
14 eqidd 2775 . 2 (𝜑 → (1r𝑆) = (1r𝑆))
15 lmodgrp 19100 . . . . 5 (𝑎 ∈ LMod → 𝑎 ∈ Grp)
1615ssriv 3762 . . . 4 LMod ⊆ Grp
17 fss 6209 . . . 4 ((𝑅:𝐼⟶LMod ∧ LMod ⊆ Grp) → 𝑅:𝐼⟶Grp)
185, 16, 17sylancl 575 . . 3 (𝜑𝑅:𝐼⟶Grp)
193, 6, 4, 18prdsgrpd 17753 . 2 (𝜑𝑌 ∈ Grp)
20 eqid 2774 . . . 4 (Base‘𝑌) = (Base‘𝑌)
21 eqid 2774 . . . 4 ( ·𝑠𝑌) = ( ·𝑠𝑌)
22 eqid 2774 . . . 4 (Base‘𝑆) = (Base‘𝑆)
234adantr 467 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑆 ∈ Ring)
24 elex 3369 . . . . . 6 (𝐼𝑉𝐼 ∈ V)
256, 24syl 17 . . . . 5 (𝜑𝐼 ∈ V)
2625adantr 467 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝐼 ∈ V)
275adantr 467 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶LMod)
28 simprl 776 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑎 ∈ (Base‘𝑆))
29 simprr 778 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑏 ∈ (Base‘𝑌))
30 prdslmodd.rs . . . . 5 ((𝜑𝑦𝐼) → (Scalar‘(𝑅𝑦)) = 𝑆)
3130adantlr 695 . . . 4 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (Scalar‘(𝑅𝑦)) = 𝑆)
323, 20, 21, 22, 23, 26, 27, 28, 29, 31prdsvscacl 19201 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌))) → (𝑎( ·𝑠𝑌)𝑏) ∈ (Base‘𝑌))
33323impb 1134 . 2 ((𝜑𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎( ·𝑠𝑌)𝑏) ∈ (Base‘𝑌))
345ffvelrnda 6519 . . . . . . 7 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ LMod)
3534adantlr 695 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑅𝑦) ∈ LMod)
36 simplr1 1266 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑎 ∈ (Base‘𝑆))
3730fveq2d 6352 . . . . . . . 8 ((𝜑𝑦𝐼) → (Base‘(Scalar‘(𝑅𝑦))) = (Base‘𝑆))
3837adantlr 695 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (Base‘(Scalar‘(𝑅𝑦))) = (Base‘𝑆))
3936, 38eleqtrrd 2856 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑎 ∈ (Base‘(Scalar‘(𝑅𝑦))))
404ad2antrr 706 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑆 ∈ Ring)
4125ad2antrr 706 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝐼 ∈ V)
425ffnd 6197 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
4342ad2antrr 706 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑅 Fn 𝐼)
44 simplr2 1268 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑏 ∈ (Base‘𝑌))
45 simpr 472 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑦𝐼)
463, 20, 40, 41, 43, 44, 45prdsbasprj 16360 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑏𝑦) ∈ (Base‘(𝑅𝑦)))
47 simplr3 1270 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑐 ∈ (Base‘𝑌))
483, 20, 40, 41, 43, 47, 45prdsbasprj 16360 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑐𝑦) ∈ (Base‘(𝑅𝑦)))
49 eqid 2774 . . . . . . 7 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
50 eqid 2774 . . . . . . 7 (+g‘(𝑅𝑦)) = (+g‘(𝑅𝑦))
51 eqid 2774 . . . . . . 7 (Scalar‘(𝑅𝑦)) = (Scalar‘(𝑅𝑦))
52 eqid 2774 . . . . . . 7 ( ·𝑠 ‘(𝑅𝑦)) = ( ·𝑠 ‘(𝑅𝑦))
53 eqid 2774 . . . . . . 7 (Base‘(Scalar‘(𝑅𝑦))) = (Base‘(Scalar‘(𝑅𝑦)))
5449, 50, 51, 52, 53lmodvsdi 19116 . . . . . 6 (((𝑅𝑦) ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘(𝑅𝑦))) ∧ (𝑏𝑦) ∈ (Base‘(𝑅𝑦)) ∧ (𝑐𝑦) ∈ (Base‘(𝑅𝑦)))) → (𝑎( ·𝑠 ‘(𝑅𝑦))((𝑏𝑦)(+g‘(𝑅𝑦))(𝑐𝑦))) = ((𝑎( ·𝑠 ‘(𝑅𝑦))(𝑏𝑦))(+g‘(𝑅𝑦))(𝑎( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))))
5535, 39, 46, 48, 54syl13anc 1481 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑎( ·𝑠 ‘(𝑅𝑦))((𝑏𝑦)(+g‘(𝑅𝑦))(𝑐𝑦))) = ((𝑎( ·𝑠 ‘(𝑅𝑦))(𝑏𝑦))(+g‘(𝑅𝑦))(𝑎( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))))
56 eqid 2774 . . . . . . 7 (+g𝑌) = (+g𝑌)
573, 20, 40, 41, 43, 44, 47, 56, 45prdsplusgfval 16362 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑏(+g𝑌)𝑐)‘𝑦) = ((𝑏𝑦)(+g‘(𝑅𝑦))(𝑐𝑦)))
5857oveq2d 6828 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑎( ·𝑠 ‘(𝑅𝑦))((𝑏(+g𝑌)𝑐)‘𝑦)) = (𝑎( ·𝑠 ‘(𝑅𝑦))((𝑏𝑦)(+g‘(𝑅𝑦))(𝑐𝑦))))
593, 20, 21, 22, 40, 41, 43, 36, 44, 45prdsvscafval 16368 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑎( ·𝑠𝑌)𝑏)‘𝑦) = (𝑎( ·𝑠 ‘(𝑅𝑦))(𝑏𝑦)))
603, 20, 21, 22, 40, 41, 43, 36, 47, 45prdsvscafval 16368 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑎( ·𝑠𝑌)𝑐)‘𝑦) = (𝑎( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)))
6159, 60oveq12d 6830 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (((𝑎( ·𝑠𝑌)𝑏)‘𝑦)(+g‘(𝑅𝑦))((𝑎( ·𝑠𝑌)𝑐)‘𝑦)) = ((𝑎( ·𝑠 ‘(𝑅𝑦))(𝑏𝑦))(+g‘(𝑅𝑦))(𝑎( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))))
6255, 58, 613eqtr4d 2818 . . . 4 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑎( ·𝑠 ‘(𝑅𝑦))((𝑏(+g𝑌)𝑐)‘𝑦)) = (((𝑎( ·𝑠𝑌)𝑏)‘𝑦)(+g‘(𝑅𝑦))((𝑎( ·𝑠𝑌)𝑐)‘𝑦)))
6362mpteq2dva 4891 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑦𝐼 ↦ (𝑎( ·𝑠 ‘(𝑅𝑦))((𝑏(+g𝑌)𝑐)‘𝑦))) = (𝑦𝐼 ↦ (((𝑎( ·𝑠𝑌)𝑏)‘𝑦)(+g‘(𝑅𝑦))((𝑎( ·𝑠𝑌)𝑐)‘𝑦))))
644adantr 467 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑆 ∈ Ring)
6525adantr 467 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝐼 ∈ V)
6642adantr 467 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑅 Fn 𝐼)
67 simpr1 1239 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑎 ∈ (Base‘𝑆))
6819adantr 467 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑌 ∈ Grp)
69 simpr2 1241 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑏 ∈ (Base‘𝑌))
70 simpr3 1243 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑐 ∈ (Base‘𝑌))
7120, 56grpcl 17658 . . . . 5 ((𝑌 ∈ Grp ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌)) → (𝑏(+g𝑌)𝑐) ∈ (Base‘𝑌))
7268, 69, 70, 71syl3anc 1480 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑏(+g𝑌)𝑐) ∈ (Base‘𝑌))
733, 20, 21, 22, 64, 65, 66, 67, 72prdsvscaval 16367 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎( ·𝑠𝑌)(𝑏(+g𝑌)𝑐)) = (𝑦𝐼 ↦ (𝑎( ·𝑠 ‘(𝑅𝑦))((𝑏(+g𝑌)𝑐)‘𝑦))))
74323adantr3 1203 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎( ·𝑠𝑌)𝑏) ∈ (Base‘𝑌))
754adantr 467 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑆 ∈ Ring)
7625adantr 467 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝐼 ∈ V)
775adantr 467 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶LMod)
78 simprl 776 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑎 ∈ (Base‘𝑆))
79 simprr 778 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑐 ∈ (Base‘𝑌))
8030adantlr 695 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (Scalar‘(𝑅𝑦)) = 𝑆)
813, 20, 21, 22, 75, 76, 77, 78, 79, 80prdsvscacl 19201 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎( ·𝑠𝑌)𝑐) ∈ (Base‘𝑌))
82813adantr2 1202 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎( ·𝑠𝑌)𝑐) ∈ (Base‘𝑌))
833, 20, 64, 65, 66, 74, 82, 56prdsplusgval 16361 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎( ·𝑠𝑌)𝑏)(+g𝑌)(𝑎( ·𝑠𝑌)𝑐)) = (𝑦𝐼 ↦ (((𝑎( ·𝑠𝑌)𝑏)‘𝑦)(+g‘(𝑅𝑦))((𝑎( ·𝑠𝑌)𝑐)‘𝑦))))
8463, 73, 833eqtr4d 2818 . 2 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎( ·𝑠𝑌)(𝑏(+g𝑌)𝑐)) = ((𝑎( ·𝑠𝑌)𝑏)(+g𝑌)(𝑎( ·𝑠𝑌)𝑐)))
854ad2antrr 706 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑆 ∈ Ring)
8625ad2antrr 706 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝐼 ∈ V)
8742ad2antrr 706 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑅 Fn 𝐼)
88 simplr1 1266 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑎 ∈ (Base‘𝑆))
89 simplr3 1270 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑐 ∈ (Base‘𝑌))
90 simpr 472 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑦𝐼)
913, 20, 21, 22, 85, 86, 87, 88, 89, 90prdsvscafval 16368 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑎( ·𝑠𝑌)𝑐)‘𝑦) = (𝑎( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)))
92 simplr2 1268 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑏 ∈ (Base‘𝑆))
933, 20, 21, 22, 85, 86, 87, 92, 89, 90prdsvscafval 16368 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑏( ·𝑠𝑌)𝑐)‘𝑦) = (𝑏( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)))
9491, 93oveq12d 6830 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (((𝑎( ·𝑠𝑌)𝑐)‘𝑦)(+g‘(𝑅𝑦))((𝑏( ·𝑠𝑌)𝑐)‘𝑦)) = ((𝑎( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))(+g‘(𝑅𝑦))(𝑏( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))))
9534adantlr 695 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑅𝑦) ∈ LMod)
9637adantlr 695 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (Base‘(Scalar‘(𝑅𝑦))) = (Base‘𝑆))
9788, 96eleqtrrd 2856 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑎 ∈ (Base‘(Scalar‘(𝑅𝑦))))
9892, 96eleqtrrd 2856 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑏 ∈ (Base‘(Scalar‘(𝑅𝑦))))
993, 20, 85, 86, 87, 89, 90prdsbasprj 16360 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑐𝑦) ∈ (Base‘(𝑅𝑦)))
100 eqid 2774 . . . . . . 7 (+g‘(Scalar‘(𝑅𝑦))) = (+g‘(Scalar‘(𝑅𝑦)))
10149, 50, 51, 52, 53, 100lmodvsdir 19117 . . . . . 6 (((𝑅𝑦) ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘(𝑅𝑦))) ∧ 𝑏 ∈ (Base‘(Scalar‘(𝑅𝑦))) ∧ (𝑐𝑦) ∈ (Base‘(𝑅𝑦)))) → ((𝑎(+g‘(Scalar‘(𝑅𝑦)))𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)) = ((𝑎( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))(+g‘(𝑅𝑦))(𝑏( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))))
10295, 97, 98, 99, 101syl13anc 1481 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑎(+g‘(Scalar‘(𝑅𝑦)))𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)) = ((𝑎( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))(+g‘(𝑅𝑦))(𝑏( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))))
10330adantlr 695 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (Scalar‘(𝑅𝑦)) = 𝑆)
104103fveq2d 6352 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (+g‘(Scalar‘(𝑅𝑦))) = (+g𝑆))
105104oveqd 6829 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑎(+g‘(Scalar‘(𝑅𝑦)))𝑏) = (𝑎(+g𝑆)𝑏))
106105oveq1d 6827 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑎(+g‘(Scalar‘(𝑅𝑦)))𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)) = ((𝑎(+g𝑆)𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)))
10794, 102, 1063eqtr2rd 2815 . . . 4 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑎(+g𝑆)𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)) = (((𝑎( ·𝑠𝑌)𝑐)‘𝑦)(+g‘(𝑅𝑦))((𝑏( ·𝑠𝑌)𝑐)‘𝑦)))
108107mpteq2dva 4891 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑦𝐼 ↦ ((𝑎(+g𝑆)𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))) = (𝑦𝐼 ↦ (((𝑎( ·𝑠𝑌)𝑐)‘𝑦)(+g‘(𝑅𝑦))((𝑏( ·𝑠𝑌)𝑐)‘𝑦))))
1094adantr 467 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑆 ∈ Ring)
11025adantr 467 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝐼 ∈ V)
11142adantr 467 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑅 Fn 𝐼)
112 simpr1 1239 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑎 ∈ (Base‘𝑆))
113 simpr2 1241 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑏 ∈ (Base‘𝑆))
114 eqid 2774 . . . . . 6 (+g𝑆) = (+g𝑆)
11522, 114ringacl 18806 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝑎(+g𝑆)𝑏) ∈ (Base‘𝑆))
116109, 112, 113, 115syl3anc 1480 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎(+g𝑆)𝑏) ∈ (Base‘𝑆))
117 simpr3 1243 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑐 ∈ (Base‘𝑌))
1183, 20, 21, 22, 109, 110, 111, 116, 117prdsvscaval 16367 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎(+g𝑆)𝑏)( ·𝑠𝑌)𝑐) = (𝑦𝐼 ↦ ((𝑎(+g𝑆)𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))))
119813adantr2 1202 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎( ·𝑠𝑌)𝑐) ∈ (Base‘𝑌))
1205adantr 467 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶LMod)
1213, 20, 21, 22, 109, 110, 120, 113, 117, 103prdsvscacl 19201 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑏( ·𝑠𝑌)𝑐) ∈ (Base‘𝑌))
1223, 20, 109, 110, 111, 119, 121, 56prdsplusgval 16361 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎( ·𝑠𝑌)𝑐)(+g𝑌)(𝑏( ·𝑠𝑌)𝑐)) = (𝑦𝐼 ↦ (((𝑎( ·𝑠𝑌)𝑐)‘𝑦)(+g‘(𝑅𝑦))((𝑏( ·𝑠𝑌)𝑐)‘𝑦))))
123108, 118, 1223eqtr4d 2818 . 2 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎(+g𝑆)𝑏)( ·𝑠𝑌)𝑐) = ((𝑎( ·𝑠𝑌)𝑐)(+g𝑌)(𝑏( ·𝑠𝑌)𝑐)))
12493oveq2d 6828 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑎( ·𝑠 ‘(𝑅𝑦))((𝑏( ·𝑠𝑌)𝑐)‘𝑦)) = (𝑎( ·𝑠 ‘(𝑅𝑦))(𝑏( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))))
125 eqid 2774 . . . . . . 7 (.r‘(Scalar‘(𝑅𝑦))) = (.r‘(Scalar‘(𝑅𝑦)))
12649, 51, 52, 53, 125lmodvsass 19118 . . . . . 6 (((𝑅𝑦) ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘(𝑅𝑦))) ∧ 𝑏 ∈ (Base‘(Scalar‘(𝑅𝑦))) ∧ (𝑐𝑦) ∈ (Base‘(𝑅𝑦)))) → ((𝑎(.r‘(Scalar‘(𝑅𝑦)))𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)) = (𝑎( ·𝑠 ‘(𝑅𝑦))(𝑏( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))))
12795, 97, 98, 99, 126syl13anc 1481 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑎(.r‘(Scalar‘(𝑅𝑦)))𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)) = (𝑎( ·𝑠 ‘(𝑅𝑦))(𝑏( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))))
128103fveq2d 6352 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (.r‘(Scalar‘(𝑅𝑦))) = (.r𝑆))
129128oveqd 6829 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑎(.r‘(Scalar‘(𝑅𝑦)))𝑏) = (𝑎(.r𝑆)𝑏))
130129oveq1d 6827 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑎(.r‘(Scalar‘(𝑅𝑦)))𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)) = ((𝑎(.r𝑆)𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)))
131124, 127, 1303eqtr2rd 2815 . . . 4 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑎(.r𝑆)𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦)) = (𝑎( ·𝑠 ‘(𝑅𝑦))((𝑏( ·𝑠𝑌)𝑐)‘𝑦)))
132131mpteq2dva 4891 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑦𝐼 ↦ ((𝑎(.r𝑆)𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))) = (𝑦𝐼 ↦ (𝑎( ·𝑠 ‘(𝑅𝑦))((𝑏( ·𝑠𝑌)𝑐)‘𝑦))))
133 eqid 2774 . . . . . 6 (.r𝑆) = (.r𝑆)
13422, 133ringcl 18789 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝑎(.r𝑆)𝑏) ∈ (Base‘𝑆))
135109, 112, 113, 134syl3anc 1480 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎(.r𝑆)𝑏) ∈ (Base‘𝑆))
1363, 20, 21, 22, 109, 110, 111, 135, 117prdsvscaval 16367 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎(.r𝑆)𝑏)( ·𝑠𝑌)𝑐) = (𝑦𝐼 ↦ ((𝑎(.r𝑆)𝑏)( ·𝑠 ‘(𝑅𝑦))(𝑐𝑦))))
1373, 20, 21, 22, 109, 110, 111, 112, 121prdsvscaval 16367 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎( ·𝑠𝑌)(𝑏( ·𝑠𝑌)𝑐)) = (𝑦𝐼 ↦ (𝑎( ·𝑠 ‘(𝑅𝑦))((𝑏( ·𝑠𝑌)𝑐)‘𝑦))))
138132, 136, 1373eqtr4d 2818 . 2 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎(.r𝑆)𝑏)( ·𝑠𝑌)𝑐) = (𝑎( ·𝑠𝑌)(𝑏( ·𝑠𝑌)𝑐)))
13930fveq2d 6352 . . . . . . 7 ((𝜑𝑦𝐼) → (1r‘(Scalar‘(𝑅𝑦))) = (1r𝑆))
140139adantlr 695 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌)) ∧ 𝑦𝐼) → (1r‘(Scalar‘(𝑅𝑦))) = (1r𝑆))
141140oveq1d 6827 . . . . 5 (((𝜑𝑎 ∈ (Base‘𝑌)) ∧ 𝑦𝐼) → ((1r‘(Scalar‘(𝑅𝑦)))( ·𝑠 ‘(𝑅𝑦))(𝑎𝑦)) = ((1r𝑆)( ·𝑠 ‘(𝑅𝑦))(𝑎𝑦)))
14234adantlr 695 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌)) ∧ 𝑦𝐼) → (𝑅𝑦) ∈ LMod)
1434ad2antrr 706 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘𝑌)) ∧ 𝑦𝐼) → 𝑆 ∈ Ring)
14425ad2antrr 706 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘𝑌)) ∧ 𝑦𝐼) → 𝐼 ∈ V)
14542ad2antrr 706 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘𝑌)) ∧ 𝑦𝐼) → 𝑅 Fn 𝐼)
146 simplr 774 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘𝑌)) ∧ 𝑦𝐼) → 𝑎 ∈ (Base‘𝑌))
147 simpr 472 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘𝑌)) ∧ 𝑦𝐼) → 𝑦𝐼)
1483, 20, 143, 144, 145, 146, 147prdsbasprj 16360 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝑌)) ∧ 𝑦𝐼) → (𝑎𝑦) ∈ (Base‘(𝑅𝑦)))
149 eqid 2774 . . . . . . 7 (1r‘(Scalar‘(𝑅𝑦))) = (1r‘(Scalar‘(𝑅𝑦)))
15049, 51, 52, 149lmodvs1 19121 . . . . . 6 (((𝑅𝑦) ∈ LMod ∧ (𝑎𝑦) ∈ (Base‘(𝑅𝑦))) → ((1r‘(Scalar‘(𝑅𝑦)))( ·𝑠 ‘(𝑅𝑦))(𝑎𝑦)) = (𝑎𝑦))
151142, 148, 150syl2anc 574 . . . . 5 (((𝜑𝑎 ∈ (Base‘𝑌)) ∧ 𝑦𝐼) → ((1r‘(Scalar‘(𝑅𝑦)))( ·𝑠 ‘(𝑅𝑦))(𝑎𝑦)) = (𝑎𝑦))
152141, 151eqtr3d 2810 . . . 4 (((𝜑𝑎 ∈ (Base‘𝑌)) ∧ 𝑦𝐼) → ((1r𝑆)( ·𝑠 ‘(𝑅𝑦))(𝑎𝑦)) = (𝑎𝑦))
153152mpteq2dva 4891 . . 3 ((𝜑𝑎 ∈ (Base‘𝑌)) → (𝑦𝐼 ↦ ((1r𝑆)( ·𝑠 ‘(𝑅𝑦))(𝑎𝑦))) = (𝑦𝐼 ↦ (𝑎𝑦)))
1544adantr 467 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌)) → 𝑆 ∈ Ring)
15525adantr 467 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌)) → 𝐼 ∈ V)
15642adantr 467 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌)) → 𝑅 Fn 𝐼)
157 eqid 2774 . . . . . . 7 (1r𝑆) = (1r𝑆)
15822, 157ringidcl 18796 . . . . . 6 (𝑆 ∈ Ring → (1r𝑆) ∈ (Base‘𝑆))
1594, 158syl 17 . . . . 5 (𝜑 → (1r𝑆) ∈ (Base‘𝑆))
160159adantr 467 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌)) → (1r𝑆) ∈ (Base‘𝑆))
161 simpr 472 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌)) → 𝑎 ∈ (Base‘𝑌))
1623, 20, 21, 22, 154, 155, 156, 160, 161prdsvscaval 16367 . . 3 ((𝜑𝑎 ∈ (Base‘𝑌)) → ((1r𝑆)( ·𝑠𝑌)𝑎) = (𝑦𝐼 ↦ ((1r𝑆)( ·𝑠 ‘(𝑅𝑦))(𝑎𝑦))))
1633, 20, 154, 155, 156, 161prdsbasfn 16359 . . . 4 ((𝜑𝑎 ∈ (Base‘𝑌)) → 𝑎 Fn 𝐼)
164 dffn5 6400 . . . 4 (𝑎 Fn 𝐼𝑎 = (𝑦𝐼 ↦ (𝑎𝑦)))
165163, 164sylib 209 . . 3 ((𝜑𝑎 ∈ (Base‘𝑌)) → 𝑎 = (𝑦𝐼 ↦ (𝑎𝑦)))
166153, 162, 1653eqtr4d 2818 . 2 ((𝜑𝑎 ∈ (Base‘𝑌)) → ((1r𝑆)( ·𝑠𝑌)𝑎) = 𝑎)
1671, 2, 9, 10, 11, 12, 13, 14, 4, 19, 33, 84, 123, 138, 166islmodd 19099 1 (𝜑𝑌 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1098   = wceq 1634  wcel 2148  Vcvv 3355  wss 3729  cmpt 4876   Fn wfn 6037  wf 6038  cfv 6042  (class class class)co 6812  Basecbs 16084  +gcplusg 16169  .rcmulr 16170  Scalarcsca 16172   ·𝑠 cvsca 16173  Xscprds 16334  Grpcgrp 17650  1rcur 18729  Ringcrg 18775  LModclmod 19093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-rep 4917  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117  ax-cnex 10215  ax-resscn 10216  ax-1cn 10217  ax-icn 10218  ax-addcl 10219  ax-addrcl 10220  ax-mulcl 10221  ax-mulrcl 10222  ax-mulcom 10223  ax-addass 10224  ax-mulass 10225  ax-distr 10226  ax-i2m1 10227  ax-1ne0 10228  ax-1rid 10229  ax-rnegex 10230  ax-rrecex 10231  ax-cnre 10232  ax-pre-lttri 10233  ax-pre-lttrn 10234  ax-pre-ltadd 10235  ax-pre-mulgt0 10236
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3or 1099  df-3an 1100  df-tru 1637  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-pss 3745  df-nul 4074  df-if 4236  df-pw 4309  df-sn 4327  df-pr 4329  df-tp 4331  df-op 4333  df-uni 4586  df-int 4623  df-iun 4667  df-br 4798  df-opab 4860  df-mpt 4877  df-tr 4900  df-id 5171  df-eprel 5176  df-po 5184  df-so 5185  df-fr 5222  df-we 5224  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-pred 5834  df-ord 5880  df-on 5881  df-lim 5882  df-suc 5883  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-riota 6773  df-ov 6815  df-oprab 6816  df-mpt2 6817  df-om 7234  df-1st 7336  df-2nd 7337  df-wrecs 7580  df-recs 7642  df-rdg 7680  df-1o 7734  df-oadd 7738  df-er 7917  df-map 8032  df-ixp 8084  df-en 8131  df-dom 8132  df-sdom 8133  df-fin 8134  df-sup 8525  df-pnf 10299  df-mnf 10300  df-xr 10301  df-ltxr 10302  df-le 10303  df-sub 10491  df-neg 10492  df-nn 11244  df-2 11302  df-3 11303  df-4 11304  df-5 11305  df-6 11306  df-7 11307  df-8 11308  df-9 11309  df-n0 11517  df-z 11602  df-dec 11718  df-uz 11911  df-fz 12556  df-struct 16086  df-ndx 16087  df-slot 16088  df-base 16090  df-sets 16091  df-plusg 16182  df-mulr 16183  df-sca 16185  df-vsca 16186  df-ip 16187  df-tset 16188  df-ple 16189  df-ds 16192  df-hom 16194  df-cco 16195  df-0g 16330  df-prds 16336  df-mgm 17470  df-sgrp 17512  df-mnd 17523  df-grp 17653  df-minusg 17654  df-mgp 18718  df-ur 18730  df-ring 18777  df-lmod 19095
This theorem is referenced by:  pwslmod  19203  dsmmlss  20325  dsmmlmod  20326
  Copyright terms: Public domain W3C validator