MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsleval Structured version   Visualization version   GIF version

Theorem prdsleval 16345
Description: Value of the product ordering in a structure product. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
prdsbasmpt.y 𝑌 = (𝑆Xs𝑅)
prdsbasmpt.b 𝐵 = (Base‘𝑌)
prdsbasmpt.s (𝜑𝑆𝑉)
prdsbasmpt.i (𝜑𝐼𝑊)
prdsbasmpt.r (𝜑𝑅 Fn 𝐼)
prdsplusgval.f (𝜑𝐹𝐵)
prdsplusgval.g (𝜑𝐺𝐵)
prdsleval.l = (le‘𝑌)
Assertion
Ref Expression
prdsleval (𝜑 → (𝐹 𝐺 ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝐼   𝑥,𝑉   𝑥,𝑅   𝑥,𝑆   𝑥,𝑊   𝑥,𝑌
Allowed substitution hint:   (𝑥)

Proof of Theorem prdsleval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4787 . . 3 (𝐹 𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ )
2 prdsbasmpt.y . . . . . 6 𝑌 = (𝑆Xs𝑅)
3 prdsbasmpt.s . . . . . 6 (𝜑𝑆𝑉)
4 prdsbasmpt.r . . . . . . 7 (𝜑𝑅 Fn 𝐼)
5 prdsbasmpt.i . . . . . . 7 (𝜑𝐼𝑊)
6 fnex 6625 . . . . . . 7 ((𝑅 Fn 𝐼𝐼𝑊) → 𝑅 ∈ V)
74, 5, 6syl2anc 573 . . . . . 6 (𝜑𝑅 ∈ V)
8 prdsbasmpt.b . . . . . 6 𝐵 = (Base‘𝑌)
9 fndm 6130 . . . . . . 7 (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼)
104, 9syl 17 . . . . . 6 (𝜑 → dom 𝑅 = 𝐼)
11 prdsleval.l . . . . . 6 = (le‘𝑌)
122, 3, 7, 8, 10, 11prdsle 16330 . . . . 5 (𝜑 = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
13 vex 3354 . . . . . . . 8 𝑓 ∈ V
14 vex 3354 . . . . . . . 8 𝑔 ∈ V
1513, 14prss 4486 . . . . . . 7 ((𝑓𝐵𝑔𝐵) ↔ {𝑓, 𝑔} ⊆ 𝐵)
1615anbi1i 610 . . . . . 6 (((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥)) ↔ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥)))
1716opabbii 4851 . . . . 5 {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}
1812, 17syl6eqr 2823 . . . 4 (𝜑 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
1918eleq2d 2836 . . 3 (𝜑 → (⟨𝐹, 𝐺⟩ ∈ ↔ ⟨𝐹, 𝐺⟩ ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}))
201, 19syl5bb 272 . 2 (𝜑 → (𝐹 𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}))
21 prdsplusgval.f . . 3 (𝜑𝐹𝐵)
22 prdsplusgval.g . . 3 (𝜑𝐺𝐵)
23 fveq1 6331 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
24 fveq1 6331 . . . . . 6 (𝑔 = 𝐺 → (𝑔𝑥) = (𝐺𝑥))
2523, 24breqan12d 4802 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥) ↔ (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
2625ralbidv 3135 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥) ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
2726opelopab2a 5123 . . 3 ((𝐹𝐵𝐺𝐵) → (⟨𝐹, 𝐺⟩ ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
2821, 22, 27syl2anc 573 . 2 (𝜑 → (⟨𝐹, 𝐺⟩ ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
2920, 28bitrd 268 1 (𝜑 → (𝐹 𝐺 ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  Vcvv 3351  wss 3723  {cpr 4318  cop 4322   class class class wbr 4786  {copab 4846  dom cdm 5249   Fn wfn 6026  cfv 6031  (class class class)co 6793  Basecbs 16064  lecple 16156  Xscprds 16314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-plusg 16162  df-mulr 16163  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-hom 16174  df-cco 16175  df-prds 16316
This theorem is referenced by:  xpsle  16449
  Copyright terms: Public domain W3C validator