Step | Hyp | Ref
| Expression |
1 | | prdsidlem.z |
. . . 4
⊢ 0 =
(0g ∘ 𝑅) |
2 | | fvexd 6316 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝑅‘𝑦) ∈ V) |
3 | | prdsplusgcl.r |
. . . . . 6
⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
4 | 3 | feqmptd 6363 |
. . . . 5
⊢ (𝜑 → 𝑅 = (𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦))) |
5 | | fn0g 17384 |
. . . . . . 7
⊢
0g Fn V |
6 | 5 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 0g Fn
V) |
7 | | dffn5 6355 |
. . . . . 6
⊢
(0g Fn V ↔ 0g = (𝑥 ∈ V ↦ (0g‘𝑥))) |
8 | 6, 7 | sylib 208 |
. . . . 5
⊢ (𝜑 → 0g = (𝑥 ∈ V ↦
(0g‘𝑥))) |
9 | | fveq2 6304 |
. . . . 5
⊢ (𝑥 = (𝑅‘𝑦) → (0g‘𝑥) = (0g‘(𝑅‘𝑦))) |
10 | 2, 4, 8, 9 | fmptco 6511 |
. . . 4
⊢ (𝜑 → (0g ∘
𝑅) = (𝑦 ∈ 𝐼 ↦ (0g‘(𝑅‘𝑦)))) |
11 | 1, 10 | syl5eq 2770 |
. . 3
⊢ (𝜑 → 0 = (𝑦 ∈ 𝐼 ↦ (0g‘(𝑅‘𝑦)))) |
12 | 3 | ffvelrnda 6474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝑅‘𝑦) ∈ Mnd) |
13 | | eqid 2724 |
. . . . . . 7
⊢
(Base‘(𝑅‘𝑦)) = (Base‘(𝑅‘𝑦)) |
14 | | eqid 2724 |
. . . . . . 7
⊢
(0g‘(𝑅‘𝑦)) = (0g‘(𝑅‘𝑦)) |
15 | 13, 14 | mndidcl 17430 |
. . . . . 6
⊢ ((𝑅‘𝑦) ∈ Mnd →
(0g‘(𝑅‘𝑦)) ∈ (Base‘(𝑅‘𝑦))) |
16 | 12, 15 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (0g‘(𝑅‘𝑦)) ∈ (Base‘(𝑅‘𝑦))) |
17 | 16 | ralrimiva 3068 |
. . . 4
⊢ (𝜑 → ∀𝑦 ∈ 𝐼 (0g‘(𝑅‘𝑦)) ∈ (Base‘(𝑅‘𝑦))) |
18 | | prdsplusgcl.y |
. . . . 5
⊢ 𝑌 = (𝑆Xs𝑅) |
19 | | prdsplusgcl.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑌) |
20 | | prdsplusgcl.s |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
21 | | prdsplusgcl.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
22 | | ffn 6158 |
. . . . . 6
⊢ (𝑅:𝐼⟶Mnd → 𝑅 Fn 𝐼) |
23 | 3, 22 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑅 Fn 𝐼) |
24 | 18, 19, 20, 21, 23 | prdsbasmpt 16253 |
. . . 4
⊢ (𝜑 → ((𝑦 ∈ 𝐼 ↦ (0g‘(𝑅‘𝑦))) ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐼 (0g‘(𝑅‘𝑦)) ∈ (Base‘(𝑅‘𝑦)))) |
25 | 17, 24 | mpbird 247 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ (0g‘(𝑅‘𝑦))) ∈ 𝐵) |
26 | 11, 25 | eqeltrd 2803 |
. 2
⊢ (𝜑 → 0 ∈ 𝐵) |
27 | 1 | fveq1i 6305 |
. . . . . . . . . 10
⊢ ( 0 ‘𝑦) = ((0g ∘
𝑅)‘𝑦) |
28 | | fvco2 6387 |
. . . . . . . . . . 11
⊢ ((𝑅 Fn 𝐼 ∧ 𝑦 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑦) = (0g‘(𝑅‘𝑦))) |
29 | 23, 28 | sylan 489 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑦) = (0g‘(𝑅‘𝑦))) |
30 | 27, 29 | syl5eq 2770 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ( 0 ‘𝑦) = (0g‘(𝑅‘𝑦))) |
31 | 30 | adantlr 753 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → ( 0 ‘𝑦) = (0g‘(𝑅‘𝑦))) |
32 | 31 | oveq1d 6780 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → (( 0 ‘𝑦)(+g‘(𝑅‘𝑦))(𝑥‘𝑦)) = ((0g‘(𝑅‘𝑦))(+g‘(𝑅‘𝑦))(𝑥‘𝑦))) |
33 | 3 | adantr 472 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑅:𝐼⟶Mnd) |
34 | 33 | ffvelrnda 6474 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → (𝑅‘𝑦) ∈ Mnd) |
35 | 20 | ad2antrr 764 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → 𝑆 ∈ 𝑉) |
36 | 21 | ad2antrr 764 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → 𝐼 ∈ 𝑊) |
37 | 23 | ad2antrr 764 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → 𝑅 Fn 𝐼) |
38 | | simplr 809 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → 𝑥 ∈ 𝐵) |
39 | | simpr 479 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → 𝑦 ∈ 𝐼) |
40 | 18, 19, 35, 36, 37, 38, 39 | prdsbasprj 16255 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → (𝑥‘𝑦) ∈ (Base‘(𝑅‘𝑦))) |
41 | | eqid 2724 |
. . . . . . . . 9
⊢
(+g‘(𝑅‘𝑦)) = (+g‘(𝑅‘𝑦)) |
42 | 13, 41, 14 | mndlid 17433 |
. . . . . . . 8
⊢ (((𝑅‘𝑦) ∈ Mnd ∧ (𝑥‘𝑦) ∈ (Base‘(𝑅‘𝑦))) → ((0g‘(𝑅‘𝑦))(+g‘(𝑅‘𝑦))(𝑥‘𝑦)) = (𝑥‘𝑦)) |
43 | 34, 40, 42 | syl2anc 696 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → ((0g‘(𝑅‘𝑦))(+g‘(𝑅‘𝑦))(𝑥‘𝑦)) = (𝑥‘𝑦)) |
44 | 32, 43 | eqtrd 2758 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → (( 0 ‘𝑦)(+g‘(𝑅‘𝑦))(𝑥‘𝑦)) = (𝑥‘𝑦)) |
45 | 44 | mpteq2dva 4852 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑦 ∈ 𝐼 ↦ (( 0 ‘𝑦)(+g‘(𝑅‘𝑦))(𝑥‘𝑦))) = (𝑦 ∈ 𝐼 ↦ (𝑥‘𝑦))) |
46 | 20 | adantr 472 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑆 ∈ 𝑉) |
47 | 21 | adantr 472 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐼 ∈ 𝑊) |
48 | 23 | adantr 472 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑅 Fn 𝐼) |
49 | 26 | adantr 472 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 0 ∈ 𝐵) |
50 | | simpr 479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
51 | | prdsplusgcl.p |
. . . . . 6
⊢ + =
(+g‘𝑌) |
52 | 18, 19, 46, 47, 48, 49, 50, 51 | prdsplusgval 16256 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = (𝑦 ∈ 𝐼 ↦ (( 0 ‘𝑦)(+g‘(𝑅‘𝑦))(𝑥‘𝑦)))) |
53 | 18, 19, 46, 47, 48, 50 | prdsbasfn 16254 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 Fn 𝐼) |
54 | | dffn5 6355 |
. . . . . 6
⊢ (𝑥 Fn 𝐼 ↔ 𝑥 = (𝑦 ∈ 𝐼 ↦ (𝑥‘𝑦))) |
55 | 53, 54 | sylib 208 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 = (𝑦 ∈ 𝐼 ↦ (𝑥‘𝑦))) |
56 | 45, 52, 55 | 3eqtr4d 2768 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
57 | 31 | oveq2d 6781 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → ((𝑥‘𝑦)(+g‘(𝑅‘𝑦))( 0 ‘𝑦)) = ((𝑥‘𝑦)(+g‘(𝑅‘𝑦))(0g‘(𝑅‘𝑦)))) |
58 | 13, 41, 14 | mndrid 17434 |
. . . . . . . 8
⊢ (((𝑅‘𝑦) ∈ Mnd ∧ (𝑥‘𝑦) ∈ (Base‘(𝑅‘𝑦))) → ((𝑥‘𝑦)(+g‘(𝑅‘𝑦))(0g‘(𝑅‘𝑦))) = (𝑥‘𝑦)) |
59 | 34, 40, 58 | syl2anc 696 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → ((𝑥‘𝑦)(+g‘(𝑅‘𝑦))(0g‘(𝑅‘𝑦))) = (𝑥‘𝑦)) |
60 | 57, 59 | eqtrd 2758 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐼) → ((𝑥‘𝑦)(+g‘(𝑅‘𝑦))( 0 ‘𝑦)) = (𝑥‘𝑦)) |
61 | 60 | mpteq2dva 4852 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑦 ∈ 𝐼 ↦ ((𝑥‘𝑦)(+g‘(𝑅‘𝑦))( 0 ‘𝑦))) = (𝑦 ∈ 𝐼 ↦ (𝑥‘𝑦))) |
62 | 18, 19, 46, 47, 48, 50, 49, 51 | prdsplusgval 16256 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = (𝑦 ∈ 𝐼 ↦ ((𝑥‘𝑦)(+g‘(𝑅‘𝑦))( 0 ‘𝑦)))) |
63 | 61, 62, 55 | 3eqtr4d 2768 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) |
64 | 56, 63 | jca 555 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) |
65 | 64 | ralrimiva 3068 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥)) |
66 | 26, 65 | jca 555 |
1
⊢ (𝜑 → ( 0 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))) |