Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdshom Structured version   Visualization version   GIF version

Theorem prdshom 16327
 Description: Structure product hom-sets. (Contributed by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
prdsbas.p 𝑃 = (𝑆Xs𝑅)
prdsbas.s (𝜑𝑆𝑉)
prdsbas.r (𝜑𝑅𝑊)
prdsbas.b 𝐵 = (Base‘𝑃)
prdsbas.i (𝜑 → dom 𝑅 = 𝐼)
prdshom.h 𝐻 = (Hom ‘𝑃)
Assertion
Ref Expression
prdshom (𝜑𝐻 = (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))))
Distinct variable groups:   𝑓,𝑔,𝑥,𝐵   𝜑,𝑓,𝑔,𝑥   𝑓,𝐼,𝑔,𝑥   𝑃,𝑓,𝑔,𝑥   𝑅,𝑓,𝑔,𝑥   𝑆,𝑓,𝑔,𝑥
Allowed substitution hints:   𝐻(𝑥,𝑓,𝑔)   𝑉(𝑥,𝑓,𝑔)   𝑊(𝑥,𝑓,𝑔)

Proof of Theorem prdshom
Dummy variables 𝑎 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . 3 𝑃 = (𝑆Xs𝑅)
2 eqid 2758 . . 3 (Base‘𝑆) = (Base‘𝑆)
3 prdsbas.i . . 3 (𝜑 → dom 𝑅 = 𝐼)
4 prdsbas.s . . . 4 (𝜑𝑆𝑉)
5 prdsbas.r . . . 4 (𝜑𝑅𝑊)
6 prdsbas.b . . . 4 𝐵 = (Base‘𝑃)
71, 4, 5, 6, 3prdsbas 16317 . . 3 (𝜑𝐵 = X𝑥𝐼 (Base‘(𝑅𝑥)))
8 eqid 2758 . . . 4 (+g𝑃) = (+g𝑃)
91, 4, 5, 6, 3, 8prdsplusg 16318 . . 3 (𝜑 → (+g𝑃) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
10 eqid 2758 . . . 4 (.r𝑃) = (.r𝑃)
111, 4, 5, 6, 3, 10prdsmulr 16319 . . 3 (𝜑 → (.r𝑃) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))
12 eqid 2758 . . . 4 ( ·𝑠𝑃) = ( ·𝑠𝑃)
131, 4, 5, 6, 3, 2, 12prdsvsca 16320 . . 3 (𝜑 → ( ·𝑠𝑃) = (𝑓 ∈ (Base‘𝑆), 𝑔𝐵 ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
14 eqidd 2759 . . 3 (𝜑 → (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))))
15 eqid 2758 . . . 4 (TopSet‘𝑃) = (TopSet‘𝑃)
161, 4, 5, 6, 3, 15prdstset 16326 . . 3 (𝜑 → (TopSet‘𝑃) = (∏t‘(TopOpen ∘ 𝑅)))
17 eqid 2758 . . . 4 (le‘𝑃) = (le‘𝑃)
181, 4, 5, 6, 3, 17prdsle 16322 . . 3 (𝜑 → (le‘𝑃) = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
19 eqid 2758 . . . 4 (dist‘𝑃) = (dist‘𝑃)
201, 4, 5, 6, 3, 19prdsds 16324 . . 3 (𝜑 → (dist‘𝑃) = (𝑓𝐵, 𝑔𝐵 ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
21 eqidd 2759 . . 3 (𝜑 → (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) = (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))))
22 eqidd 2759 . . 3 (𝜑 → (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ (𝑐(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))(2nd𝑎)), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))) = (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ (𝑐(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))(2nd𝑎)), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))))
231, 2, 3, 7, 9, 11, 13, 14, 16, 18, 20, 21, 22, 4, 5prdsval 16315 . 2 (𝜑𝑃 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑃)⟩, ⟨(.r‘ndx), (.r𝑃)⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑃)⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (TopSet‘𝑃)⟩, ⟨(le‘ndx), (le‘𝑃)⟩, ⟨(dist‘ndx), (dist‘𝑃)⟩} ∪ {⟨(Hom ‘ndx), (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ (𝑐(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))(2nd𝑎)), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
24 prdshom.h . 2 𝐻 = (Hom ‘𝑃)
25 homid 16275 . 2 Hom = Slot (Hom ‘ndx)
26 ovssunirn 6842 . . . . . . . . . . 11 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)) ⊆ ran (Hom ‘(𝑅𝑥))
2725strfvss 16080 . . . . . . . . . . . . 13 (Hom ‘(𝑅𝑥)) ⊆ ran (𝑅𝑥)
28 fvssunirn 6376 . . . . . . . . . . . . . 14 (𝑅𝑥) ⊆ ran 𝑅
29 rnss 5507 . . . . . . . . . . . . . 14 ((𝑅𝑥) ⊆ ran 𝑅 → ran (𝑅𝑥) ⊆ ran ran 𝑅)
30 uniss 4608 . . . . . . . . . . . . . 14 (ran (𝑅𝑥) ⊆ ran ran 𝑅 ran (𝑅𝑥) ⊆ ran ran 𝑅)
3128, 29, 30mp2b 10 . . . . . . . . . . . . 13 ran (𝑅𝑥) ⊆ ran ran 𝑅
3227, 31sstri 3751 . . . . . . . . . . . 12 (Hom ‘(𝑅𝑥)) ⊆ ran ran 𝑅
33 rnss 5507 . . . . . . . . . . . 12 ((Hom ‘(𝑅𝑥)) ⊆ ran ran 𝑅 → ran (Hom ‘(𝑅𝑥)) ⊆ ran ran ran 𝑅)
34 uniss 4608 . . . . . . . . . . . 12 (ran (Hom ‘(𝑅𝑥)) ⊆ ran ran ran 𝑅 ran (Hom ‘(𝑅𝑥)) ⊆ ran ran ran 𝑅)
3532, 33, 34mp2b 10 . . . . . . . . . . 11 ran (Hom ‘(𝑅𝑥)) ⊆ ran ran ran 𝑅
3626, 35sstri 3751 . . . . . . . . . 10 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑅
3736rgenw 3060 . . . . . . . . 9 𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑅
38 ss2ixp 8085 . . . . . . . . 9 (∀𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑅X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)) ⊆ X𝑥𝐼 ran ran ran 𝑅)
3937, 38ax-mp 5 . . . . . . . 8 X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)) ⊆ X𝑥𝐼 ran ran ran 𝑅
40 dmexg 7260 . . . . . . . . . . 11 (𝑅𝑊 → dom 𝑅 ∈ V)
415, 40syl 17 . . . . . . . . . 10 (𝜑 → dom 𝑅 ∈ V)
423, 41eqeltrrd 2838 . . . . . . . . 9 (𝜑𝐼 ∈ V)
43 rnexg 7261 . . . . . . . . . . . 12 (𝑅𝑊 → ran 𝑅 ∈ V)
44 uniexg 7118 . . . . . . . . . . . 12 (ran 𝑅 ∈ V → ran 𝑅 ∈ V)
455, 43, 443syl 18 . . . . . . . . . . 11 (𝜑 ran 𝑅 ∈ V)
46 rnexg 7261 . . . . . . . . . . 11 ( ran 𝑅 ∈ V → ran ran 𝑅 ∈ V)
47 uniexg 7118 . . . . . . . . . . 11 (ran ran 𝑅 ∈ V → ran ran 𝑅 ∈ V)
4845, 46, 473syl 18 . . . . . . . . . 10 (𝜑 ran ran 𝑅 ∈ V)
49 rnexg 7261 . . . . . . . . . 10 ( ran ran 𝑅 ∈ V → ran ran ran 𝑅 ∈ V)
50 uniexg 7118 . . . . . . . . . 10 (ran ran ran 𝑅 ∈ V → ran ran ran 𝑅 ∈ V)
5148, 49, 503syl 18 . . . . . . . . 9 (𝜑 ran ran ran 𝑅 ∈ V)
52 ixpconstg 8081 . . . . . . . . 9 ((𝐼 ∈ V ∧ ran ran ran 𝑅 ∈ V) → X𝑥𝐼 ran ran ran 𝑅 = ( ran ran ran 𝑅𝑚 𝐼))
5342, 51, 52syl2anc 696 . . . . . . . 8 (𝜑X𝑥𝐼 ran ran ran 𝑅 = ( ran ran ran 𝑅𝑚 𝐼))
5439, 53syl5sseq 3792 . . . . . . 7 (𝜑X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)) ⊆ ( ran ran ran 𝑅𝑚 𝐼))
55 ovex 6839 . . . . . . . 8 ( ran ran ran 𝑅𝑚 𝐼) ∈ V
5655elpw2 4975 . . . . . . 7 (X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)) ∈ 𝒫 ( ran ran ran 𝑅𝑚 𝐼) ↔ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)) ⊆ ( ran ran ran 𝑅𝑚 𝐼))
5754, 56sylibr 224 . . . . . 6 (𝜑X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)) ∈ 𝒫 ( ran ran ran 𝑅𝑚 𝐼))
5857ralrimivw 3103 . . . . 5 (𝜑 → ∀𝑔𝐵 X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)) ∈ 𝒫 ( ran ran ran 𝑅𝑚 𝐼))
5958ralrimivw 3103 . . . 4 (𝜑 → ∀𝑓𝐵𝑔𝐵 X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)) ∈ 𝒫 ( ran ran ran 𝑅𝑚 𝐼))
60 eqid 2758 . . . . 5 (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) = (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))
6160fmpt2 7403 . . . 4 (∀𝑓𝐵𝑔𝐵 X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)) ∈ 𝒫 ( ran ran ran 𝑅𝑚 𝐼) ↔ (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))):(𝐵 × 𝐵)⟶𝒫 ( ran ran ran 𝑅𝑚 𝐼))
6259, 61sylib 208 . . 3 (𝜑 → (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))):(𝐵 × 𝐵)⟶𝒫 ( ran ran ran 𝑅𝑚 𝐼))
63 fvex 6360 . . . . . 6 (Base‘𝑃) ∈ V
646, 63eqeltri 2833 . . . . 5 𝐵 ∈ V
6564, 64xpex 7125 . . . 4 (𝐵 × 𝐵) ∈ V
6665a1i 11 . . 3 (𝜑 → (𝐵 × 𝐵) ∈ V)
6755pwex 4995 . . . 4 𝒫 ( ran ran ran 𝑅𝑚 𝐼) ∈ V
6867a1i 11 . . 3 (𝜑 → 𝒫 ( ran ran ran 𝑅𝑚 𝐼) ∈ V)
69 fex2 7284 . . 3 (((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))):(𝐵 × 𝐵)⟶𝒫 ( ran ran ran 𝑅𝑚 𝐼) ∧ (𝐵 × 𝐵) ∈ V ∧ 𝒫 ( ran ran ran 𝑅𝑚 𝐼) ∈ V) → (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) ∈ V)
7062, 66, 68, 69syl3anc 1477 . 2 (𝜑 → (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) ∈ V)
71 snsspr1 4488 . . . 4 {⟨(Hom ‘ndx), (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩} ⊆ {⟨(Hom ‘ndx), (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ (𝑐(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))(2nd𝑎)), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}
72 ssun2 3918 . . . 4 {⟨(Hom ‘ndx), (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ (𝑐(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))(2nd𝑎)), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩} ⊆ ({⟨(TopSet‘ndx), (TopSet‘𝑃)⟩, ⟨(le‘ndx), (le‘𝑃)⟩, ⟨(dist‘ndx), (dist‘𝑃)⟩} ∪ {⟨(Hom ‘ndx), (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ (𝑐(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))(2nd𝑎)), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})
7371, 72sstri 3751 . . 3 {⟨(Hom ‘ndx), (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩} ⊆ ({⟨(TopSet‘ndx), (TopSet‘𝑃)⟩, ⟨(le‘ndx), (le‘𝑃)⟩, ⟨(dist‘ndx), (dist‘𝑃)⟩} ∪ {⟨(Hom ‘ndx), (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ (𝑐(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))(2nd𝑎)), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})
74 ssun2 3918 . . 3 ({⟨(TopSet‘ndx), (TopSet‘𝑃)⟩, ⟨(le‘ndx), (le‘𝑃)⟩, ⟨(dist‘ndx), (dist‘𝑃)⟩} ∪ {⟨(Hom ‘ndx), (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ (𝑐(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))(2nd𝑎)), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}) ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑃)⟩, ⟨(.r‘ndx), (.r𝑃)⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑃)⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (TopSet‘𝑃)⟩, ⟨(le‘ndx), (le‘𝑃)⟩, ⟨(dist‘ndx), (dist‘𝑃)⟩} ∪ {⟨(Hom ‘ndx), (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ (𝑐(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))(2nd𝑎)), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))
7573, 74sstri 3751 . 2 {⟨(Hom ‘ndx), (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩} ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑃)⟩, ⟨(.r‘ndx), (.r𝑃)⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑃)⟩, ⟨(·𝑖‘ndx), (𝑓𝐵, 𝑔𝐵 ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (TopSet‘𝑃)⟩, ⟨(le‘ndx), (le‘𝑃)⟩, ⟨(dist‘ndx), (dist‘𝑃)⟩} ∪ {⟨(Hom ‘ndx), (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐𝐵 ↦ (𝑑 ∈ (𝑐(𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))(2nd𝑎)), 𝑒 ∈ ((𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))
7623, 24, 25, 70, 75prdsvallem 16314 1 (𝜑𝐻 = (𝑓𝐵, 𝑔𝐵X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1630   ∈ wcel 2137  ∀wral 3048  Vcvv 3338   ∪ cun 3711   ⊆ wss 3713  𝒫 cpw 4300  {csn 4319  {cpr 4321  {ctp 4323  ⟨cop 4325  ∪ cuni 4586   ↦ cmpt 4879   × cxp 5262  dom cdm 5264  ran crn 5265  ⟶wf 6043  ‘cfv 6047  (class class class)co 6811   ↦ cmpt2 6813  1st c1st 7329  2nd c2nd 7330   ↑𝑚 cmap 8021  Xcixp 8072  ndxcnx 16054  Basecbs 16057  +gcplusg 16141  .rcmulr 16142  Scalarcsca 16144   ·𝑠 cvsca 16145  ·𝑖cip 16146  TopSetcts 16147  lecple 16148  distcds 16150  Hom chom 16152  compcco 16153   Σg cgsu 16301  Xscprds 16306 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-oadd 7731  df-er 7909  df-map 8023  df-ixp 8073  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-sup 8511  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-nn 11211  df-2 11269  df-3 11270  df-4 11271  df-5 11272  df-6 11273  df-7 11274  df-8 11275  df-9 11276  df-n0 11483  df-z 11568  df-dec 11684  df-uz 11878  df-fz 12518  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-plusg 16154  df-mulr 16155  df-sca 16157  df-vsca 16158  df-ip 16159  df-tset 16160  df-ple 16161  df-ds 16164  df-hom 16166  df-cco 16167  df-prds 16308 This theorem is referenced by:  prdsco  16328
 Copyright terms: Public domain W3C validator