Step | Hyp | Ref
| Expression |
1 | | totbndbnd 33901 |
. 2
⊢ (𝐶 ∈ (TotBnd‘𝐴) → 𝐶 ∈ (Bnd‘𝐴)) |
2 | | bndmet 33893 |
. . . . 5
⊢ (𝐶 ∈ (Bnd‘𝐴) → 𝐶 ∈ (Met‘𝐴)) |
3 | | 0totbnd 33885 |
. . . . 5
⊢ (𝐴 = ∅ → (𝐶 ∈ (TotBnd‘𝐴) ↔ 𝐶 ∈ (Met‘𝐴))) |
4 | 2, 3 | syl5ibr 236 |
. . . 4
⊢ (𝐴 = ∅ → (𝐶 ∈ (Bnd‘𝐴) → 𝐶 ∈ (TotBnd‘𝐴))) |
5 | 4 | a1i 11 |
. . 3
⊢ (𝜑 → (𝐴 = ∅ → (𝐶 ∈ (Bnd‘𝐴) → 𝐶 ∈ (TotBnd‘𝐴)))) |
6 | | n0 4074 |
. . . 4
⊢ (𝐴 ≠ ∅ ↔
∃𝑎 𝑎 ∈ 𝐴) |
7 | | simprr 813 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) → 𝐶 ∈ (Bnd‘𝐴)) |
8 | | eqid 2760 |
. . . . . . . . . . . 12
⊢ (𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))) = (𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))) |
9 | | eqid 2760 |
. . . . . . . . . . . 12
⊢
(Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))) = (Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))) |
10 | | prdsbnd.v |
. . . . . . . . . . . 12
⊢ 𝑉 = (Base‘(𝑅‘𝑥)) |
11 | | prdsbnd.e |
. . . . . . . . . . . 12
⊢ 𝐸 = ((dist‘(𝑅‘𝑥)) ↾ (𝑉 × 𝑉)) |
12 | | eqid 2760 |
. . . . . . . . . . . 12
⊢
(dist‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))) = (dist‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))) |
13 | | prdsbnd.s |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ∈ 𝑊) |
14 | | prdsbnd.i |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐼 ∈ Fin) |
15 | | fvexd 6364 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑅‘𝑥) ∈ V) |
16 | | prdsbnd2.e |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (Met‘𝑉)) |
17 | 8, 9, 10, 11, 12, 13, 14, 15, 16 | prdsmet 22376 |
. . . . . . . . . . 11
⊢ (𝜑 → (dist‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))) ∈ (Met‘(Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))))) |
18 | | prdsbnd.d |
. . . . . . . . . . . 12
⊢ 𝐷 = (dist‘𝑌) |
19 | | prdsbnd.y |
. . . . . . . . . . . . . 14
⊢ 𝑌 = (𝑆Xs𝑅) |
20 | | prdsbnd.r |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑅 Fn 𝐼) |
21 | | dffn5 6403 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 Fn 𝐼 ↔ 𝑅 = (𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))) |
22 | 20, 21 | sylib 208 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑅 = (𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))) |
23 | 22 | oveq2d 6829 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑆Xs𝑅) = (𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))) |
24 | 19, 23 | syl5eq 2806 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))) |
25 | 24 | fveq2d 6356 |
. . . . . . . . . . . 12
⊢ (𝜑 → (dist‘𝑌) = (dist‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))))) |
26 | 18, 25 | syl5eq 2806 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 = (dist‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))))) |
27 | | prdsbnd.b |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝑌) |
28 | 24 | fveq2d 6356 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (Base‘𝑌) = (Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))))) |
29 | 27, 28 | syl5eq 2806 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 = (Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))))) |
30 | 29 | fveq2d 6356 |
. . . . . . . . . . 11
⊢ (𝜑 → (Met‘𝐵) =
(Met‘(Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))))) |
31 | 17, 26, 30 | 3eltr4d 2854 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ (Met‘𝐵)) |
32 | 31 | adantr 472 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) → 𝐷 ∈ (Met‘𝐵)) |
33 | | simpr 479 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴)) → 𝐶 ∈ (Bnd‘𝐴)) |
34 | | prdsbnd2.c |
. . . . . . . . . . . 12
⊢ 𝐶 = (𝐷 ↾ (𝐴 × 𝐴)) |
35 | 34 | bnd2lem 33903 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (Met‘𝐵) ∧ 𝐶 ∈ (Bnd‘𝐴)) → 𝐴 ⊆ 𝐵) |
36 | 31, 33, 35 | syl2an 495 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) → 𝐴 ⊆ 𝐵) |
37 | | simprl 811 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) → 𝑎 ∈ 𝐴) |
38 | 36, 37 | sseldd 3745 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) → 𝑎 ∈ 𝐵) |
39 | 34 | ssbnd 33900 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (Met‘𝐵) ∧ 𝑎 ∈ 𝐵) → (𝐶 ∈ (Bnd‘𝐴) ↔ ∃𝑟 ∈ ℝ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) |
40 | 32, 38, 39 | syl2anc 696 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) → (𝐶 ∈ (Bnd‘𝐴) ↔ ∃𝑟 ∈ ℝ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) |
41 | 7, 40 | mpbid 222 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) → ∃𝑟 ∈ ℝ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟)) |
42 | | simprr 813 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟)) |
43 | | xpss12 5281 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ (𝑎(ball‘𝐷)𝑟) ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟)) → (𝐴 × 𝐴) ⊆ ((𝑎(ball‘𝐷)𝑟) × (𝑎(ball‘𝐷)𝑟))) |
44 | 42, 42, 43 | syl2anc 696 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → (𝐴 × 𝐴) ⊆ ((𝑎(ball‘𝐷)𝑟) × (𝑎(ball‘𝐷)𝑟))) |
45 | 44 | resabs1d 5586 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → ((𝐷 ↾ ((𝑎(ball‘𝐷)𝑟) × (𝑎(ball‘𝐷)𝑟))) ↾ (𝐴 × 𝐴)) = (𝐷 ↾ (𝐴 × 𝐴))) |
46 | 45, 34 | syl6eqr 2812 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → ((𝐷 ↾ ((𝑎(ball‘𝐷)𝑟) × (𝑎(ball‘𝐷)𝑟))) ↾ (𝐴 × 𝐴)) = 𝐶) |
47 | | simpll 807 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → 𝜑) |
48 | 38 | adantr 472 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → 𝑎 ∈ 𝐵) |
49 | | simprl 811 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → 𝑟 ∈ ℝ) |
50 | 37 | adantr 472 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → 𝑎 ∈ 𝐴) |
51 | 42, 50 | sseldd 3745 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → 𝑎 ∈ (𝑎(ball‘𝐷)𝑟)) |
52 | | ne0i 4064 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ (𝑎(ball‘𝐷)𝑟) → (𝑎(ball‘𝐷)𝑟) ≠ ∅) |
53 | 51, 52 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → (𝑎(ball‘𝐷)𝑟) ≠ ∅) |
54 | 31 | ad2antrr 764 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → 𝐷 ∈ (Met‘𝐵)) |
55 | | metxmet 22340 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ (Met‘𝐵) → 𝐷 ∈ (∞Met‘𝐵)) |
56 | 54, 55 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → 𝐷 ∈ (∞Met‘𝐵)) |
57 | 49 | rexrd 10281 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → 𝑟 ∈ ℝ*) |
58 | | xbln0 22420 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ*) → ((𝑎(ball‘𝐷)𝑟) ≠ ∅ ↔ 0 < 𝑟)) |
59 | 56, 48, 57, 58 | syl3anc 1477 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → ((𝑎(ball‘𝐷)𝑟) ≠ ∅ ↔ 0 < 𝑟)) |
60 | 53, 59 | mpbid 222 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → 0 < 𝑟) |
61 | 49, 60 | elrpd 12062 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → 𝑟 ∈ ℝ+) |
62 | | eqid 2760 |
. . . . . . . . . . . 12
⊢ (𝑆Xs(𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))) = (𝑆Xs(𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))) |
63 | | eqid 2760 |
. . . . . . . . . . . 12
⊢
(Base‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟))))) = (Base‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟))))) |
64 | | eqid 2760 |
. . . . . . . . . . . 12
⊢
(Base‘((𝑦
∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥)) = (Base‘((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥)) |
65 | | eqid 2760 |
. . . . . . . . . . . 12
⊢
((dist‘((𝑦
∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥)) ↾ ((Base‘((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥)) × (Base‘((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥)))) = ((dist‘((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥)) ↾ ((Base‘((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥)) × (Base‘((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥)))) |
66 | | eqid 2760 |
. . . . . . . . . . . 12
⊢
(dist‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟))))) = (dist‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟))))) |
67 | 13 | adantr 472 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → 𝑆 ∈ 𝑊) |
68 | 14 | adantr 472 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → 𝐼 ∈ Fin) |
69 | | ovex 6841 |
. . . . . . . . . . . . . 14
⊢ ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟)) ∈ V |
70 | | fveq2 6352 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑥 → (𝑅‘𝑦) = (𝑅‘𝑥)) |
71 | 70 | fveq2d 6356 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑥 → (dist‘(𝑅‘𝑦)) = (dist‘(𝑅‘𝑥))) |
72 | 70 | fveq2d 6356 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = 𝑥 → (Base‘(𝑅‘𝑦)) = (Base‘(𝑅‘𝑥))) |
73 | 72, 10 | syl6eqr 2812 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑥 → (Base‘(𝑅‘𝑦)) = 𝑉) |
74 | 73 | sqxpeqd 5298 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑥 → ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦))) = (𝑉 × 𝑉)) |
75 | 71, 74 | reseq12d 5552 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑥 → ((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))) = ((dist‘(𝑅‘𝑥)) ↾ (𝑉 × 𝑉))) |
76 | 75, 11 | syl6eqr 2812 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑥 → ((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))) = 𝐸) |
77 | 76 | fveq2d 6356 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑥 → (ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦))))) = (ball‘𝐸)) |
78 | | fveq2 6352 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑥 → (𝑎‘𝑦) = (𝑎‘𝑥)) |
79 | | eqidd 2761 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑥 → 𝑟 = 𝑟) |
80 | 77, 78, 79 | oveq123d 6834 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑥 → ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟) = ((𝑎‘𝑥)(ball‘𝐸)𝑟)) |
81 | 70, 80 | oveq12d 6831 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑥 → ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)) = ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟))) |
82 | 81 | cbvmptv 4902 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟))) = (𝑥 ∈ 𝐼 ↦ ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟))) |
83 | 69, 82 | fnmpti 6183 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟))) Fn 𝐼 |
84 | 83 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → (𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟))) Fn 𝐼) |
85 | 16 | adantlr 753 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (Met‘𝑉)) |
86 | | metxmet 22340 |
. . . . . . . . . . . . . . . 16
⊢ (𝐸 ∈ (Met‘𝑉) → 𝐸 ∈ (∞Met‘𝑉)) |
87 | 85, 86 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) |
88 | 15 | ralrimiva 3104 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝑅‘𝑥) ∈ V) |
89 | 88 | adantr 472 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) →
∀𝑥 ∈ 𝐼 (𝑅‘𝑥) ∈ V) |
90 | | simprl 811 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → 𝑎 ∈ 𝐵) |
91 | 29 | adantr 472 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → 𝐵 = (Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))))) |
92 | 90, 91 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → 𝑎 ∈ (Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))))) |
93 | 8, 9, 67, 68, 89, 10, 92 | prdsbascl 16345 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) →
∀𝑥 ∈ 𝐼 (𝑎‘𝑥) ∈ 𝑉) |
94 | 93 | r19.21bi 3070 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → (𝑎‘𝑥) ∈ 𝑉) |
95 | | simplrr 820 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → 𝑟 ∈ ℝ+) |
96 | 95 | rpred 12065 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → 𝑟 ∈ ℝ) |
97 | | blbnd 33899 |
. . . . . . . . . . . . . . 15
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑎‘𝑥) ∈ 𝑉 ∧ 𝑟 ∈ ℝ) → (𝐸 ↾ (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟))) ∈ (Bnd‘((𝑎‘𝑥)(ball‘𝐸)𝑟))) |
98 | 87, 94, 96, 97 | syl3anc 1477 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → (𝐸 ↾ (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟))) ∈ (Bnd‘((𝑎‘𝑥)(ball‘𝐸)𝑟))) |
99 | | ovex 6841 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎‘𝑥)(ball‘𝐸)𝑟) ∈ V |
100 | | xpeq12 5291 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 = ((𝑎‘𝑥)(ball‘𝐸)𝑟) ∧ 𝑦 = ((𝑎‘𝑥)(ball‘𝐸)𝑟)) → (𝑦 × 𝑦) = (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟))) |
101 | 100 | anidms 680 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = ((𝑎‘𝑥)(ball‘𝐸)𝑟) → (𝑦 × 𝑦) = (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟))) |
102 | 101 | reseq2d 5551 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = ((𝑎‘𝑥)(ball‘𝐸)𝑟) → (𝐸 ↾ (𝑦 × 𝑦)) = (𝐸 ↾ (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟)))) |
103 | | fveq2 6352 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = ((𝑎‘𝑥)(ball‘𝐸)𝑟) → (TotBnd‘𝑦) = (TotBnd‘((𝑎‘𝑥)(ball‘𝐸)𝑟))) |
104 | 102, 103 | eleq12d 2833 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = ((𝑎‘𝑥)(ball‘𝐸)𝑟) → ((𝐸 ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (𝐸 ↾ (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟))) ∈ (TotBnd‘((𝑎‘𝑥)(ball‘𝐸)𝑟)))) |
105 | | fveq2 6352 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = ((𝑎‘𝑥)(ball‘𝐸)𝑟) → (Bnd‘𝑦) = (Bnd‘((𝑎‘𝑥)(ball‘𝐸)𝑟))) |
106 | 102, 105 | eleq12d 2833 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = ((𝑎‘𝑥)(ball‘𝐸)𝑟) → ((𝐸 ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) ↔ (𝐸 ↾ (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟))) ∈ (Bnd‘((𝑎‘𝑥)(ball‘𝐸)𝑟)))) |
107 | 104, 106 | bibi12d 334 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = ((𝑎‘𝑥)(ball‘𝐸)𝑟) → (((𝐸 ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (𝐸 ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)) ↔ ((𝐸 ↾ (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟))) ∈ (TotBnd‘((𝑎‘𝑥)(ball‘𝐸)𝑟)) ↔ (𝐸 ↾ (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟))) ∈ (Bnd‘((𝑎‘𝑥)(ball‘𝐸)𝑟))))) |
108 | 107 | imbi2d 329 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = ((𝑎‘𝑥)(ball‘𝐸)𝑟) → (((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐸 ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (𝐸 ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))) ↔ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐸 ↾ (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟))) ∈ (TotBnd‘((𝑎‘𝑥)(ball‘𝐸)𝑟)) ↔ (𝐸 ↾ (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟))) ∈ (Bnd‘((𝑎‘𝑥)(ball‘𝐸)𝑟)))))) |
109 | | prdsbnd2.m |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐸 ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (𝐸 ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))) |
110 | 99, 108, 109 | vtocl 3399 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐸 ↾ (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟))) ∈ (TotBnd‘((𝑎‘𝑥)(ball‘𝐸)𝑟)) ↔ (𝐸 ↾ (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟))) ∈ (Bnd‘((𝑎‘𝑥)(ball‘𝐸)𝑟)))) |
111 | 110 | adantlr 753 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → ((𝐸 ↾ (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟))) ∈ (TotBnd‘((𝑎‘𝑥)(ball‘𝐸)𝑟)) ↔ (𝐸 ↾ (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟))) ∈ (Bnd‘((𝑎‘𝑥)(ball‘𝐸)𝑟)))) |
112 | 98, 111 | mpbird 247 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → (𝐸 ↾ (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟))) ∈ (TotBnd‘((𝑎‘𝑥)(ball‘𝐸)𝑟))) |
113 | | eqid 2760 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟))) = (𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟))) |
114 | 81, 113, 69 | fvmpt 6444 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝐼 → ((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥) = ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟))) |
115 | 114 | adantl 473 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → ((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥) = ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟))) |
116 | 115 | fveq2d 6356 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → (dist‘((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥)) = (dist‘((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟)))) |
117 | | eqid 2760 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟)) = ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟)) |
118 | | eqid 2760 |
. . . . . . . . . . . . . . . . . 18
⊢
(dist‘(𝑅‘𝑥)) = (dist‘(𝑅‘𝑥)) |
119 | 117, 118 | ressds 16275 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑎‘𝑥)(ball‘𝐸)𝑟) ∈ V → (dist‘(𝑅‘𝑥)) = (dist‘((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟)))) |
120 | 99, 119 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢
(dist‘(𝑅‘𝑥)) = (dist‘((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟))) |
121 | 116, 120 | syl6eqr 2812 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → (dist‘((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥)) = (dist‘(𝑅‘𝑥))) |
122 | 115 | fveq2d 6356 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → (Base‘((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥)) = (Base‘((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟)))) |
123 | | rpxr 12033 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
124 | 123 | ad2antll 767 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → 𝑟 ∈
ℝ*) |
125 | 124 | adantr 472 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → 𝑟 ∈ ℝ*) |
126 | | blssm 22424 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑎‘𝑥) ∈ 𝑉 ∧ 𝑟 ∈ ℝ*) → ((𝑎‘𝑥)(ball‘𝐸)𝑟) ⊆ 𝑉) |
127 | 87, 94, 125, 126 | syl3anc 1477 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → ((𝑎‘𝑥)(ball‘𝐸)𝑟) ⊆ 𝑉) |
128 | 117, 10 | ressbas2 16133 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑎‘𝑥)(ball‘𝐸)𝑟) ⊆ 𝑉 → ((𝑎‘𝑥)(ball‘𝐸)𝑟) = (Base‘((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟)))) |
129 | 127, 128 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → ((𝑎‘𝑥)(ball‘𝐸)𝑟) = (Base‘((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟)))) |
130 | 122, 129 | eqtr4d 2797 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → (Base‘((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥)) = ((𝑎‘𝑥)(ball‘𝐸)𝑟)) |
131 | 130 | sqxpeqd 5298 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → ((Base‘((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥)) × (Base‘((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥))) = (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟))) |
132 | 121, 131 | reseq12d 5552 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → ((dist‘((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥)) ↾ ((Base‘((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥)) × (Base‘((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥)))) = ((dist‘(𝑅‘𝑥)) ↾ (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟)))) |
133 | 11 | reseq1i 5547 |
. . . . . . . . . . . . . . 15
⊢ (𝐸 ↾ (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟))) = (((dist‘(𝑅‘𝑥)) ↾ (𝑉 × 𝑉)) ↾ (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟))) |
134 | | xpss12 5281 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑎‘𝑥)(ball‘𝐸)𝑟) ⊆ 𝑉 ∧ ((𝑎‘𝑥)(ball‘𝐸)𝑟) ⊆ 𝑉) → (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟)) ⊆ (𝑉 × 𝑉)) |
135 | 127, 127,
134 | syl2anc 696 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟)) ⊆ (𝑉 × 𝑉)) |
136 | 135 | resabs1d 5586 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → (((dist‘(𝑅‘𝑥)) ↾ (𝑉 × 𝑉)) ↾ (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟))) = ((dist‘(𝑅‘𝑥)) ↾ (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟)))) |
137 | 133, 136 | syl5eq 2806 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → (𝐸 ↾ (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟))) = ((dist‘(𝑅‘𝑥)) ↾ (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟)))) |
138 | 132, 137 | eqtr4d 2797 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → ((dist‘((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥)) ↾ ((Base‘((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥)) × (Base‘((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥)))) = (𝐸 ↾ (((𝑎‘𝑥)(ball‘𝐸)𝑟) × ((𝑎‘𝑥)(ball‘𝐸)𝑟)))) |
139 | 130 | fveq2d 6356 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → (TotBnd‘(Base‘((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥))) = (TotBnd‘((𝑎‘𝑥)(ball‘𝐸)𝑟))) |
140 | 112, 138,
139 | 3eltr4d 2854 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → ((dist‘((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥)) ↾ ((Base‘((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥)) × (Base‘((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥)))) ∈ (TotBnd‘(Base‘((𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))‘𝑥)))) |
141 | 62, 63, 64, 65, 66, 67, 68, 84, 140 | prdstotbnd 33906 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) →
(dist‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟))))) ∈ (TotBnd‘(Base‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟))))))) |
142 | 24 | adantr 472 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)))) |
143 | | eqidd 2761 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → (𝑆Xs(𝑥 ∈ 𝐼 ↦ ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟)))) = (𝑆Xs(𝑥 ∈ 𝐼 ↦ ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟))))) |
144 | | eqid 2760 |
. . . . . . . . . . . . 13
⊢
(Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟))))) = (Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟))))) |
145 | 82 | oveq2i 6824 |
. . . . . . . . . . . . . 14
⊢ (𝑆Xs(𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))) = (𝑆Xs(𝑥 ∈ 𝐼 ↦ ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟)))) |
146 | 145 | fveq2i 6355 |
. . . . . . . . . . . . 13
⊢
(dist‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟))))) = (dist‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟))))) |
147 | | fvexd 6364 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → (𝑅‘𝑥) ∈ V) |
148 | 99 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → ((𝑎‘𝑥)(ball‘𝐸)𝑟) ∈ V) |
149 | 142, 143,
144, 18, 146, 67, 67, 68, 147, 148 | ressprdsds 22377 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) →
(dist‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟))))) = (𝐷 ↾ ((Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟))))) × (Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟)))))))) |
150 | 129 | ixpeq2dva 8089 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → X𝑥 ∈
𝐼 ((𝑎‘𝑥)(ball‘𝐸)𝑟) = X𝑥 ∈ 𝐼 (Base‘((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟)))) |
151 | 70 | cbvmptv 4902 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦)) = (𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥)) |
152 | 151 | oveq2i 6824 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦))) = (𝑆Xs(𝑥 ∈ 𝐼 ↦ (𝑅‘𝑥))) |
153 | 24, 152 | syl6eqr 2812 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑌 = (𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦)))) |
154 | 153 | fveq2d 6356 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (dist‘𝑌) = (dist‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦))))) |
155 | 18, 154 | syl5eq 2806 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐷 = (dist‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦))))) |
156 | 155 | fveq2d 6356 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (ball‘𝐷) =
(ball‘(dist‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦)))))) |
157 | 156 | oveqdr 6837 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → (𝑎(ball‘𝐷)𝑟) = (𝑎(ball‘(dist‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦)))))𝑟)) |
158 | | eqid 2760 |
. . . . . . . . . . . . . . . . 17
⊢
(Base‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦)))) = (Base‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦)))) |
159 | | eqid 2760 |
. . . . . . . . . . . . . . . . 17
⊢
(dist‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦)))) = (dist‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦)))) |
160 | 153 | fveq2d 6356 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (Base‘𝑌) = (Base‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦))))) |
161 | 27, 160 | syl5eq 2806 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐵 = (Base‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦))))) |
162 | 161 | adantr 472 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → 𝐵 = (Base‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦))))) |
163 | 90, 162 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → 𝑎 ∈ (Base‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦))))) |
164 | | rpgt0 12037 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 ∈ ℝ+
→ 0 < 𝑟) |
165 | 164 | ad2antll 767 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → 0 <
𝑟) |
166 | 152, 158,
10, 11, 159, 67, 68, 147, 87, 163, 124, 165 | prdsbl 22497 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → (𝑎(ball‘(dist‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ (𝑅‘𝑦)))))𝑟) = X𝑥 ∈ 𝐼 ((𝑎‘𝑥)(ball‘𝐸)𝑟)) |
167 | 157, 166 | eqtrd 2794 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → (𝑎(ball‘𝐷)𝑟) = X𝑥 ∈ 𝐼 ((𝑎‘𝑥)(ball‘𝐸)𝑟)) |
168 | | eqid 2760 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆Xs(𝑥 ∈ 𝐼 ↦ ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟)))) = (𝑆Xs(𝑥 ∈ 𝐼 ↦ ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟)))) |
169 | 69 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) ∧ 𝑥 ∈ 𝐼) → ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟)) ∈ V) |
170 | 169 | ralrimiva 3104 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) →
∀𝑥 ∈ 𝐼 ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟)) ∈ V) |
171 | | eqid 2760 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟))) = (Base‘((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟))) |
172 | 168, 144,
67, 68, 170, 171 | prdsbas3 16343 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) →
(Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟))))) = X𝑥 ∈ 𝐼 (Base‘((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟)))) |
173 | 150, 167,
172 | 3eqtr4rd 2805 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) →
(Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟))))) = (𝑎(ball‘𝐷)𝑟)) |
174 | 173 | sqxpeqd 5298 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) →
((Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟))))) × (Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟)))))) = ((𝑎(ball‘𝐷)𝑟) × (𝑎(ball‘𝐷)𝑟))) |
175 | 174 | reseq2d 5551 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → (𝐷 ↾ ((Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟))))) × (Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟))))))) = (𝐷 ↾ ((𝑎(ball‘𝐷)𝑟) × (𝑎(ball‘𝐷)𝑟)))) |
176 | 149, 175 | eqtrd 2794 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) →
(dist‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟))))) = (𝐷 ↾ ((𝑎(ball‘𝐷)𝑟) × (𝑎(ball‘𝐷)𝑟)))) |
177 | 145 | fveq2i 6355 |
. . . . . . . . . . . . 13
⊢
(Base‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟))))) = (Base‘(𝑆Xs(𝑥 ∈ 𝐼 ↦ ((𝑅‘𝑥) ↾s ((𝑎‘𝑥)(ball‘𝐸)𝑟))))) |
178 | 177, 173 | syl5eq 2806 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) →
(Base‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟))))) = (𝑎(ball‘𝐷)𝑟)) |
179 | 178 | fveq2d 6356 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) →
(TotBnd‘(Base‘(𝑆Xs(𝑦 ∈ 𝐼 ↦ ((𝑅‘𝑦) ↾s ((𝑎‘𝑦)(ball‘((dist‘(𝑅‘𝑦)) ↾ ((Base‘(𝑅‘𝑦)) × (Base‘(𝑅‘𝑦)))))𝑟)))))) = (TotBnd‘(𝑎(ball‘𝐷)𝑟))) |
180 | 141, 176,
179 | 3eltr3d 2853 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+)) → (𝐷 ↾ ((𝑎(ball‘𝐷)𝑟) × (𝑎(ball‘𝐷)𝑟))) ∈ (TotBnd‘(𝑎(ball‘𝐷)𝑟))) |
181 | 47, 48, 61, 180 | syl12anc 1475 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → (𝐷 ↾ ((𝑎(ball‘𝐷)𝑟) × (𝑎(ball‘𝐷)𝑟))) ∈ (TotBnd‘(𝑎(ball‘𝐷)𝑟))) |
182 | | totbndss 33889 |
. . . . . . . . 9
⊢ (((𝐷 ↾ ((𝑎(ball‘𝐷)𝑟) × (𝑎(ball‘𝐷)𝑟))) ∈ (TotBnd‘(𝑎(ball‘𝐷)𝑟)) ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟)) → ((𝐷 ↾ ((𝑎(ball‘𝐷)𝑟) × (𝑎(ball‘𝐷)𝑟))) ↾ (𝐴 × 𝐴)) ∈ (TotBnd‘𝐴)) |
183 | 181, 42, 182 | syl2anc 696 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → ((𝐷 ↾ ((𝑎(ball‘𝐷)𝑟) × (𝑎(ball‘𝐷)𝑟))) ↾ (𝐴 × 𝐴)) ∈ (TotBnd‘𝐴)) |
184 | 46, 183 | eqeltrrd 2840 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → 𝐶 ∈ (TotBnd‘𝐴)) |
185 | 41, 184 | rexlimddv 3173 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝐶 ∈ (Bnd‘𝐴))) → 𝐶 ∈ (TotBnd‘𝐴)) |
186 | 185 | exp32 632 |
. . . . 5
⊢ (𝜑 → (𝑎 ∈ 𝐴 → (𝐶 ∈ (Bnd‘𝐴) → 𝐶 ∈ (TotBnd‘𝐴)))) |
187 | 186 | exlimdv 2010 |
. . . 4
⊢ (𝜑 → (∃𝑎 𝑎 ∈ 𝐴 → (𝐶 ∈ (Bnd‘𝐴) → 𝐶 ∈ (TotBnd‘𝐴)))) |
188 | 6, 187 | syl5bi 232 |
. . 3
⊢ (𝜑 → (𝐴 ≠ ∅ → (𝐶 ∈ (Bnd‘𝐴) → 𝐶 ∈ (TotBnd‘𝐴)))) |
189 | 5, 188 | pm2.61dne 3018 |
. 2
⊢ (𝜑 → (𝐶 ∈ (Bnd‘𝐴) → 𝐶 ∈ (TotBnd‘𝐴))) |
190 | 1, 189 | impbid2 216 |
1
⊢ (𝜑 → (𝐶 ∈ (TotBnd‘𝐴) ↔ 𝐶 ∈ (Bnd‘𝐴))) |