![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdom2 | Structured version Visualization version GIF version |
Description: An unordered pair has at most two elements. (Contributed by FL, 22-Feb-2011.) |
Ref | Expression |
---|---|
prdom2 | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ≼ 2𝑜) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4334 | . . . . . 6 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | ensn1g 8188 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ≈ 1𝑜) | |
3 | endom 8150 | . . . . . . . 8 ⊢ ({𝐴} ≈ 1𝑜 → {𝐴} ≼ 1𝑜) | |
4 | 1sdom2 8326 | . . . . . . . 8 ⊢ 1𝑜 ≺ 2𝑜 | |
5 | domsdomtr 8262 | . . . . . . . . 9 ⊢ (({𝐴} ≼ 1𝑜 ∧ 1𝑜 ≺ 2𝑜) → {𝐴} ≺ 2𝑜) | |
6 | sdomdom 8151 | . . . . . . . . 9 ⊢ ({𝐴} ≺ 2𝑜 → {𝐴} ≼ 2𝑜) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ (({𝐴} ≼ 1𝑜 ∧ 1𝑜 ≺ 2𝑜) → {𝐴} ≼ 2𝑜) |
8 | 3, 4, 7 | sylancl 697 | . . . . . . 7 ⊢ ({𝐴} ≈ 1𝑜 → {𝐴} ≼ 2𝑜) |
9 | 2, 8 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ≼ 2𝑜) |
10 | 1, 9 | syl5eqbrr 4840 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → {𝐴, 𝐴} ≼ 2𝑜) |
11 | preq2 4413 | . . . . . 6 ⊢ (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴}) | |
12 | 11 | breq1d 4814 | . . . . 5 ⊢ (𝐵 = 𝐴 → ({𝐴, 𝐵} ≼ 2𝑜 ↔ {𝐴, 𝐴} ≼ 2𝑜)) |
13 | 10, 12 | syl5ibr 236 | . . . 4 ⊢ (𝐵 = 𝐴 → (𝐴 ∈ 𝐶 → {𝐴, 𝐵} ≼ 2𝑜)) |
14 | 13 | eqcoms 2768 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 → {𝐴, 𝐵} ≼ 2𝑜)) |
15 | 14 | adantrd 485 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ≼ 2𝑜)) |
16 | pr2ne 9038 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} ≈ 2𝑜 ↔ 𝐴 ≠ 𝐵)) | |
17 | 16 | biimprd 238 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ≠ 𝐵 → {𝐴, 𝐵} ≈ 2𝑜)) |
18 | endom 8150 | . . 3 ⊢ ({𝐴, 𝐵} ≈ 2𝑜 → {𝐴, 𝐵} ≼ 2𝑜) | |
19 | 17, 18 | syl6com 37 | . 2 ⊢ (𝐴 ≠ 𝐵 → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ≼ 2𝑜)) |
20 | 15, 19 | pm2.61ine 3015 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝐴, 𝐵} ≼ 2𝑜) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 {csn 4321 {cpr 4323 class class class wbr 4804 1𝑜c1o 7723 2𝑜c2o 7724 ≈ cen 8120 ≼ cdom 8121 ≺ csdm 8122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-om 7232 df-1o 7730 df-2o 7731 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |