![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prcssprc | Structured version Visualization version GIF version |
Description: The superclass of a proper class is a proper class. (Contributed by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
prcssprc | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∉ V) → 𝐵 ∉ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg 4935 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
2 | 1 | ex 397 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∈ V → 𝐴 ∈ V)) |
3 | 2 | nelcon3d 3057 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∉ V → 𝐵 ∉ V)) |
4 | 3 | imp 393 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∉ V) → 𝐵 ∉ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2144 ∉ wnel 3045 Vcvv 3349 ⊆ wss 3721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-nel 3046 df-v 3351 df-in 3728 df-ss 3735 |
This theorem is referenced by: usgrprc 26380 rgrusgrprc 26719 rgrprc 26721 |
Copyright terms: Public domain | W3C validator |