Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pr2ne Structured version   Visualization version   GIF version

Theorem pr2ne 8866
 Description: If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010.)
Assertion
Ref Expression
pr2ne ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2𝑜𝐴𝐵))

Proof of Theorem pr2ne
StepHypRef Expression
1 preq2 4301 . . . . 5 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴})
21eqcoms 2659 . . . 4 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴, 𝐴})
3 enpr1g 8063 . . . . . . . 8 (𝐴𝐶 → {𝐴, 𝐴} ≈ 1𝑜)
4 entr 8049 . . . . . . . . . . . 12 (({𝐴, 𝐵} ≈ {𝐴, 𝐴} ∧ {𝐴, 𝐴} ≈ 1𝑜) → {𝐴, 𝐵} ≈ 1𝑜)
5 1sdom2 8200 . . . . . . . . . . . . . . 15 1𝑜 ≺ 2𝑜
6 sdomnen 8026 . . . . . . . . . . . . . . 15 (1𝑜 ≺ 2𝑜 → ¬ 1𝑜 ≈ 2𝑜)
75, 6ax-mp 5 . . . . . . . . . . . . . 14 ¬ 1𝑜 ≈ 2𝑜
8 ensym 8046 . . . . . . . . . . . . . . 15 ({𝐴, 𝐵} ≈ 1𝑜 → 1𝑜 ≈ {𝐴, 𝐵})
9 entr 8049 . . . . . . . . . . . . . . . 16 ((1𝑜 ≈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ≈ 2𝑜) → 1𝑜 ≈ 2𝑜)
109ex 449 . . . . . . . . . . . . . . 15 (1𝑜 ≈ {𝐴, 𝐵} → ({𝐴, 𝐵} ≈ 2𝑜 → 1𝑜 ≈ 2𝑜))
118, 10syl 17 . . . . . . . . . . . . . 14 ({𝐴, 𝐵} ≈ 1𝑜 → ({𝐴, 𝐵} ≈ 2𝑜 → 1𝑜 ≈ 2𝑜))
127, 11mtoi 190 . . . . . . . . . . . . 13 ({𝐴, 𝐵} ≈ 1𝑜 → ¬ {𝐴, 𝐵} ≈ 2𝑜)
1312a1d 25 . . . . . . . . . . . 12 ({𝐴, 𝐵} ≈ 1𝑜 → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2𝑜))
144, 13syl 17 . . . . . . . . . . 11 (({𝐴, 𝐵} ≈ {𝐴, 𝐴} ∧ {𝐴, 𝐴} ≈ 1𝑜) → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2𝑜))
1514ex 449 . . . . . . . . . 10 ({𝐴, 𝐵} ≈ {𝐴, 𝐴} → ({𝐴, 𝐴} ≈ 1𝑜 → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2𝑜)))
16 prex 4939 . . . . . . . . . . 11 {𝐴, 𝐵} ∈ V
17 eqeng 8031 . . . . . . . . . . 11 ({𝐴, 𝐵} ∈ V → ({𝐴, 𝐵} = {𝐴, 𝐴} → {𝐴, 𝐵} ≈ {𝐴, 𝐴}))
1816, 17ax-mp 5 . . . . . . . . . 10 ({𝐴, 𝐵} = {𝐴, 𝐴} → {𝐴, 𝐵} ≈ {𝐴, 𝐴})
1915, 18syl11 33 . . . . . . . . 9 ({𝐴, 𝐴} ≈ 1𝑜 → ({𝐴, 𝐵} = {𝐴, 𝐴} → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2𝑜)))
2019a1dd 50 . . . . . . . 8 ({𝐴, 𝐴} ≈ 1𝑜 → ({𝐴, 𝐵} = {𝐴, 𝐴} → (𝐵𝐷 → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2𝑜))))
213, 20syl 17 . . . . . . 7 (𝐴𝐶 → ({𝐴, 𝐵} = {𝐴, 𝐴} → (𝐵𝐷 → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2𝑜))))
2221com23 86 . . . . . 6 (𝐴𝐶 → (𝐵𝐷 → ({𝐴, 𝐵} = {𝐴, 𝐴} → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2𝑜))))
2322imp 444 . . . . 5 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2𝑜)))
2423pm2.43a 54 . . . 4 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → ¬ {𝐴, 𝐵} ≈ 2𝑜))
252, 24syl5 34 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴 = 𝐵 → ¬ {𝐴, 𝐵} ≈ 2𝑜))
2625necon2ad 2838 . 2 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2𝑜𝐴𝐵))
27 pr2nelem 8865 . . 3 ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2𝑜)
28273expia 1286 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴𝐵 → {𝐴, 𝐵} ≈ 2𝑜))
2926, 28impbid 202 1 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2𝑜𝐴𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  Vcvv 3231  {cpr 4212   class class class wbr 4685  1𝑜c1o 7598  2𝑜c2o 7599   ≈ cen 7994   ≺ csdm 7996 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-1o 7605  df-2o 7606  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000 This theorem is referenced by:  prdom2  8867  isprm2lem  15441  pmtrrn2  17926  mdetunilem7  20472
 Copyright terms: Public domain W3C validator