Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppttop Structured version   Visualization version   GIF version

Theorem ppttop 20859
 Description: The particular point topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
ppttop ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ (TopOn‘𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑃   𝑥,𝑉

Proof of Theorem ppttop
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab 3713 . . . . 5 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ↔ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅)))
2 simprl 809 . . . . . . . . 9 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → 𝑦 ⊆ 𝒫 𝐴)
3 sspwuni 4643 . . . . . . . . 9 (𝑦 ⊆ 𝒫 𝐴 𝑦𝐴)
42, 3sylib 208 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → 𝑦𝐴)
5 vuniex 6996 . . . . . . . . 9 𝑦 ∈ V
65elpw 4197 . . . . . . . 8 ( 𝑦 ∈ 𝒫 𝐴 𝑦𝐴)
74, 6sylibr 224 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → 𝑦 ∈ 𝒫 𝐴)
8 neq0 3963 . . . . . . . . . 10 𝑦 = ∅ ↔ ∃𝑧 𝑧 𝑦)
9 eluni2 4472 . . . . . . . . . . . 12 (𝑧 𝑦 ↔ ∃𝑥𝑦 𝑧𝑥)
10 r19.29 3101 . . . . . . . . . . . . . . 15 ((∀𝑥𝑦 (𝑃𝑥𝑥 = ∅) ∧ ∃𝑥𝑦 𝑧𝑥) → ∃𝑥𝑦 ((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥))
11 n0i 3953 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝑥 → ¬ 𝑥 = ∅)
1211adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥) → ¬ 𝑥 = ∅)
13 simpl 472 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥) → (𝑃𝑥𝑥 = ∅))
1413ord 391 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥) → (¬ 𝑃𝑥𝑥 = ∅))
1512, 14mt3d 140 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥) → 𝑃𝑥)
1615adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑥𝑦 ∧ ((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥)) → 𝑃𝑥)
17 simpl 472 . . . . . . . . . . . . . . . . 17 ((𝑥𝑦 ∧ ((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥)) → 𝑥𝑦)
18 elunii 4473 . . . . . . . . . . . . . . . . 17 ((𝑃𝑥𝑥𝑦) → 𝑃 𝑦)
1916, 17, 18syl2anc 694 . . . . . . . . . . . . . . . 16 ((𝑥𝑦 ∧ ((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥)) → 𝑃 𝑦)
2019rexlimiva 3057 . . . . . . . . . . . . . . 15 (∃𝑥𝑦 ((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥) → 𝑃 𝑦)
2110, 20syl 17 . . . . . . . . . . . . . 14 ((∀𝑥𝑦 (𝑃𝑥𝑥 = ∅) ∧ ∃𝑥𝑦 𝑧𝑥) → 𝑃 𝑦)
2221ex 449 . . . . . . . . . . . . 13 (∀𝑥𝑦 (𝑃𝑥𝑥 = ∅) → (∃𝑥𝑦 𝑧𝑥𝑃 𝑦))
2322ad2antll 765 . . . . . . . . . . . 12 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → (∃𝑥𝑦 𝑧𝑥𝑃 𝑦))
249, 23syl5bi 232 . . . . . . . . . . 11 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → (𝑧 𝑦𝑃 𝑦))
2524exlimdv 1901 . . . . . . . . . 10 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → (∃𝑧 𝑧 𝑦𝑃 𝑦))
268, 25syl5bi 232 . . . . . . . . 9 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → (¬ 𝑦 = ∅ → 𝑃 𝑦))
2726con1d 139 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → (¬ 𝑃 𝑦 𝑦 = ∅))
2827orrd 392 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → (𝑃 𝑦 𝑦 = ∅))
29 eleq2 2719 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑃𝑥𝑃 𝑦))
30 eqeq1 2655 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
3129, 30orbi12d 746 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑃𝑥𝑥 = ∅) ↔ (𝑃 𝑦 𝑦 = ∅)))
3231elrab 3396 . . . . . . 7 ( 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 𝑦 𝑦 = ∅)))
337, 28, 32sylanbrc 699 . . . . . 6 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
3433ex 449 . . . . 5 ((𝐴𝑉𝑃𝐴) → ((𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅)) → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}))
351, 34syl5bi 232 . . . 4 ((𝐴𝑉𝑃𝐴) → (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}))
3635alrimiv 1895 . . 3 ((𝐴𝑉𝑃𝐴) → ∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}))
37 eleq2 2719 . . . . . . . 8 (𝑥 = 𝑦 → (𝑃𝑥𝑃𝑦))
38 eqeq1 2655 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
3937, 38orbi12d 746 . . . . . . 7 (𝑥 = 𝑦 → ((𝑃𝑥𝑥 = ∅) ↔ (𝑃𝑦𝑦 = ∅)))
4039elrab 3396 . . . . . 6 (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)))
41 eleq2 2719 . . . . . . . 8 (𝑥 = 𝑧 → (𝑃𝑥𝑃𝑧))
42 eqeq1 2655 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = ∅ ↔ 𝑧 = ∅))
4341, 42orbi12d 746 . . . . . . 7 (𝑥 = 𝑧 → ((𝑃𝑥𝑥 = ∅) ↔ (𝑃𝑧𝑧 = ∅)))
4443elrab 3396 . . . . . 6 (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))
4540, 44anbi12i 733 . . . . 5 ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}) ↔ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅))))
46 inss1 3866 . . . . . . . . 9 (𝑦𝑧) ⊆ 𝑦
47 simprll 819 . . . . . . . . . 10 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → 𝑦 ∈ 𝒫 𝐴)
4847elpwid 4203 . . . . . . . . 9 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → 𝑦𝐴)
4946, 48syl5ss 3647 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (𝑦𝑧) ⊆ 𝐴)
50 vex 3234 . . . . . . . . . 10 𝑦 ∈ V
5150inex1 4832 . . . . . . . . 9 (𝑦𝑧) ∈ V
5251elpw 4197 . . . . . . . 8 ((𝑦𝑧) ∈ 𝒫 𝐴 ↔ (𝑦𝑧) ⊆ 𝐴)
5349, 52sylibr 224 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (𝑦𝑧) ∈ 𝒫 𝐴)
54 ianor 508 . . . . . . . . . . 11 (¬ (𝑃𝑦𝑃𝑧) ↔ (¬ 𝑃𝑦 ∨ ¬ 𝑃𝑧))
55 elin 3829 . . . . . . . . . . 11 (𝑃 ∈ (𝑦𝑧) ↔ (𝑃𝑦𝑃𝑧))
5654, 55xchnxbir 322 . . . . . . . . . 10 𝑃 ∈ (𝑦𝑧) ↔ (¬ 𝑃𝑦 ∨ ¬ 𝑃𝑧))
57 simprlr 820 . . . . . . . . . . . 12 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (𝑃𝑦𝑦 = ∅))
5857ord 391 . . . . . . . . . . 11 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (¬ 𝑃𝑦𝑦 = ∅))
59 simprrr 822 . . . . . . . . . . . 12 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (𝑃𝑧𝑧 = ∅))
6059ord 391 . . . . . . . . . . 11 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (¬ 𝑃𝑧𝑧 = ∅))
6158, 60orim12d 901 . . . . . . . . . 10 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → ((¬ 𝑃𝑦 ∨ ¬ 𝑃𝑧) → (𝑦 = ∅ ∨ 𝑧 = ∅)))
6256, 61syl5bi 232 . . . . . . . . 9 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (¬ 𝑃 ∈ (𝑦𝑧) → (𝑦 = ∅ ∨ 𝑧 = ∅)))
63 inss 3875 . . . . . . . . . 10 ((𝑦 ⊆ ∅ ∨ 𝑧 ⊆ ∅) → (𝑦𝑧) ⊆ ∅)
64 ss0b 4006 . . . . . . . . . . 11 (𝑦 ⊆ ∅ ↔ 𝑦 = ∅)
65 ss0b 4006 . . . . . . . . . . 11 (𝑧 ⊆ ∅ ↔ 𝑧 = ∅)
6664, 65orbi12i 542 . . . . . . . . . 10 ((𝑦 ⊆ ∅ ∨ 𝑧 ⊆ ∅) ↔ (𝑦 = ∅ ∨ 𝑧 = ∅))
67 ss0b 4006 . . . . . . . . . 10 ((𝑦𝑧) ⊆ ∅ ↔ (𝑦𝑧) = ∅)
6863, 66, 673imtr3i 280 . . . . . . . . 9 ((𝑦 = ∅ ∨ 𝑧 = ∅) → (𝑦𝑧) = ∅)
6962, 68syl6 35 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (¬ 𝑃 ∈ (𝑦𝑧) → (𝑦𝑧) = ∅))
7069orrd 392 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (𝑃 ∈ (𝑦𝑧) ∨ (𝑦𝑧) = ∅))
71 eleq2 2719 . . . . . . . . 9 (𝑥 = (𝑦𝑧) → (𝑃𝑥𝑃 ∈ (𝑦𝑧)))
72 eqeq1 2655 . . . . . . . . 9 (𝑥 = (𝑦𝑧) → (𝑥 = ∅ ↔ (𝑦𝑧) = ∅))
7371, 72orbi12d 746 . . . . . . . 8 (𝑥 = (𝑦𝑧) → ((𝑃𝑥𝑥 = ∅) ↔ (𝑃 ∈ (𝑦𝑧) ∨ (𝑦𝑧) = ∅)))
7473elrab 3396 . . . . . . 7 ((𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ↔ ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ (𝑃 ∈ (𝑦𝑧) ∨ (𝑦𝑧) = ∅)))
7553, 70, 74sylanbrc 699 . . . . . 6 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
7675ex 449 . . . . 5 ((𝐴𝑉𝑃𝐴) → (((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅))) → (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}))
7745, 76syl5bi 232 . . . 4 ((𝐴𝑉𝑃𝐴) → ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}) → (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}))
7877ralrimivv 2999 . . 3 ((𝐴𝑉𝑃𝐴) → ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
79 pwexg 4880 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
8079adantr 480 . . . . 5 ((𝐴𝑉𝑃𝐴) → 𝒫 𝐴 ∈ V)
81 rabexg 4844 . . . . 5 (𝒫 𝐴 ∈ V → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ V)
8280, 81syl 17 . . . 4 ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ V)
83 istopg 20748 . . . 4 ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ V → ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})))
8482, 83syl 17 . . 3 ((𝐴𝑉𝑃𝐴) → ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})))
8536, 78, 84mpbir2and 977 . 2 ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ Top)
86 pwidg 4206 . . . . . 6 (𝐴𝑉𝐴 ∈ 𝒫 𝐴)
8786adantr 480 . . . . 5 ((𝐴𝑉𝑃𝐴) → 𝐴 ∈ 𝒫 𝐴)
88 simpr 476 . . . . . 6 ((𝐴𝑉𝑃𝐴) → 𝑃𝐴)
8988orcd 406 . . . . 5 ((𝐴𝑉𝑃𝐴) → (𝑃𝐴𝐴 = ∅))
90 eleq2 2719 . . . . . . 7 (𝑥 = 𝐴 → (𝑃𝑥𝑃𝐴))
91 eqeq1 2655 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅))
9290, 91orbi12d 746 . . . . . 6 (𝑥 = 𝐴 → ((𝑃𝑥𝑥 = ∅) ↔ (𝑃𝐴𝐴 = ∅)))
9392elrab 3396 . . . . 5 (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ↔ (𝐴 ∈ 𝒫 𝐴 ∧ (𝑃𝐴𝐴 = ∅)))
9487, 89, 93sylanbrc 699 . . . 4 ((𝐴𝑉𝑃𝐴) → 𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
95 elssuni 4499 . . . 4 (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} → 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
9694, 95syl 17 . . 3 ((𝐴𝑉𝑃𝐴) → 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
97 ssrab2 3720 . . . . 5 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ⊆ 𝒫 𝐴
98 sspwuni 4643 . . . . 5 ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ⊆ 𝒫 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ⊆ 𝐴)
9997, 98mpbi 220 . . . 4 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ⊆ 𝐴
10099a1i 11 . . 3 ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ⊆ 𝐴)
10196, 100eqssd 3653 . 2 ((𝐴𝑉𝑃𝐴) → 𝐴 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
102 istopon 20765 . 2 ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ (TopOn‘𝐴) ↔ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ Top ∧ 𝐴 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}))
10385, 101, 102sylanbrc 699 1 ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ (TopOn‘𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383  ∀wal 1521   = wceq 1523  ∃wex 1744   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942  {crab 2945  Vcvv 3231   ∩ cin 3606   ⊆ wss 3607  ∅c0 3948  𝒫 cpw 4191  ∪ cuni 4468  ‘cfv 5926  Topctop 20746  TopOnctopon 20763 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-iota 5889  df-fun 5928  df-fv 5934  df-top 20747  df-topon 20764 This theorem is referenced by:  pptbas  20860
 Copyright terms: Public domain W3C validator