Step | Hyp | Ref
| Expression |
1 | | ppttop 20859 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} ∈ (TopOn‘𝐴)) |
2 | | topontop 20766 |
. . . 4
⊢ ({𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} ∈ (TopOn‘𝐴) → {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} ∈ Top) |
3 | 1, 2 | syl 17 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} ∈ Top) |
4 | | simpr 476 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
5 | | simplr 807 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑃 ∈ 𝐴) |
6 | | prssi 4385 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → {𝑥, 𝑃} ⊆ 𝐴) |
7 | 4, 5, 6 | syl2anc 694 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → {𝑥, 𝑃} ⊆ 𝐴) |
8 | | prex 4939 |
. . . . . . . 8
⊢ {𝑥, 𝑃} ∈ V |
9 | 8 | elpw 4197 |
. . . . . . 7
⊢ ({𝑥, 𝑃} ∈ 𝒫 𝐴 ↔ {𝑥, 𝑃} ⊆ 𝐴) |
10 | 7, 9 | sylibr 224 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → {𝑥, 𝑃} ∈ 𝒫 𝐴) |
11 | | prid2g 4328 |
. . . . . . . 8
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ {𝑥, 𝑃}) |
12 | 11 | ad2antlr 763 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑃 ∈ {𝑥, 𝑃}) |
13 | 12 | orcd 406 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑃 ∈ {𝑥, 𝑃} ∨ {𝑥, 𝑃} = ∅)) |
14 | | eleq2 2719 |
. . . . . . . 8
⊢ (𝑦 = {𝑥, 𝑃} → (𝑃 ∈ 𝑦 ↔ 𝑃 ∈ {𝑥, 𝑃})) |
15 | | eqeq1 2655 |
. . . . . . . 8
⊢ (𝑦 = {𝑥, 𝑃} → (𝑦 = ∅ ↔ {𝑥, 𝑃} = ∅)) |
16 | 14, 15 | orbi12d 746 |
. . . . . . 7
⊢ (𝑦 = {𝑥, 𝑃} → ((𝑃 ∈ 𝑦 ∨ 𝑦 = ∅) ↔ (𝑃 ∈ {𝑥, 𝑃} ∨ {𝑥, 𝑃} = ∅))) |
17 | 16 | elrab 3396 |
. . . . . 6
⊢ ({𝑥, 𝑃} ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} ↔ ({𝑥, 𝑃} ∈ 𝒫 𝐴 ∧ (𝑃 ∈ {𝑥, 𝑃} ∨ {𝑥, 𝑃} = ∅))) |
18 | 10, 13, 17 | sylanbrc 699 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → {𝑥, 𝑃} ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)}) |
19 | | eqid 2651 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}) = (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}) |
20 | 18, 19 | fmptd 6425 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}):𝐴⟶{𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)}) |
21 | | frn 6091 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}):𝐴⟶{𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} → ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}) ⊆ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)}) |
22 | 20, 21 | syl 17 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}) ⊆ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)}) |
23 | | eleq2 2719 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (𝑃 ∈ 𝑦 ↔ 𝑃 ∈ 𝑧)) |
24 | | eqeq1 2655 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (𝑦 = ∅ ↔ 𝑧 = ∅)) |
25 | 23, 24 | orbi12d 746 |
. . . . . 6
⊢ (𝑦 = 𝑧 → ((𝑃 ∈ 𝑦 ∨ 𝑦 = ∅) ↔ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) |
26 | 25 | elrab 3396 |
. . . . 5
⊢ (𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) |
27 | | elpwi 4201 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝒫 𝐴 → 𝑧 ⊆ 𝐴) |
28 | 27 | ad2antrl 764 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) → 𝑧 ⊆ 𝐴) |
29 | 28 | sselda 3636 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → 𝑤 ∈ 𝐴) |
30 | | prid1g 4327 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝑧 → 𝑤 ∈ {𝑤, 𝑃}) |
31 | 30 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → 𝑤 ∈ {𝑤, 𝑃}) |
32 | | simpr 476 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → 𝑤 ∈ 𝑧) |
33 | | n0i 3953 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ 𝑧 → ¬ 𝑧 = ∅) |
34 | 33 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → ¬ 𝑧 = ∅) |
35 | | simplrr 818 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅)) |
36 | 35 | ord 391 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → (¬ 𝑃 ∈ 𝑧 → 𝑧 = ∅)) |
37 | 34, 36 | mt3d 140 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → 𝑃 ∈ 𝑧) |
38 | | prssi 4385 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ 𝑧 ∧ 𝑃 ∈ 𝑧) → {𝑤, 𝑃} ⊆ 𝑧) |
39 | 32, 37, 38 | syl2anc 694 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → {𝑤, 𝑃} ⊆ 𝑧) |
40 | | preq1 4300 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → {𝑥, 𝑃} = {𝑤, 𝑃}) |
41 | 40 | eleq2d 2716 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → (𝑤 ∈ {𝑥, 𝑃} ↔ 𝑤 ∈ {𝑤, 𝑃})) |
42 | 40 | sseq1d 3665 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → ({𝑥, 𝑃} ⊆ 𝑧 ↔ {𝑤, 𝑃} ⊆ 𝑧)) |
43 | 41, 42 | anbi12d 747 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → ((𝑤 ∈ {𝑥, 𝑃} ∧ {𝑥, 𝑃} ⊆ 𝑧) ↔ (𝑤 ∈ {𝑤, 𝑃} ∧ {𝑤, 𝑃} ⊆ 𝑧))) |
44 | 43 | rspcev 3340 |
. . . . . . . . 9
⊢ ((𝑤 ∈ 𝐴 ∧ (𝑤 ∈ {𝑤, 𝑃} ∧ {𝑤, 𝑃} ⊆ 𝑧)) → ∃𝑥 ∈ 𝐴 (𝑤 ∈ {𝑥, 𝑃} ∧ {𝑥, 𝑃} ⊆ 𝑧)) |
45 | 29, 31, 39, 44 | syl12anc 1364 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → ∃𝑥 ∈ 𝐴 (𝑤 ∈ {𝑥, 𝑃} ∧ {𝑥, 𝑃} ⊆ 𝑧)) |
46 | 8 | rgenw 2953 |
. . . . . . . . 9
⊢
∀𝑥 ∈
𝐴 {𝑥, 𝑃} ∈ V |
47 | | eleq2 2719 |
. . . . . . . . . . 11
⊢ (𝑣 = {𝑥, 𝑃} → (𝑤 ∈ 𝑣 ↔ 𝑤 ∈ {𝑥, 𝑃})) |
48 | | sseq1 3659 |
. . . . . . . . . . 11
⊢ (𝑣 = {𝑥, 𝑃} → (𝑣 ⊆ 𝑧 ↔ {𝑥, 𝑃} ⊆ 𝑧)) |
49 | 47, 48 | anbi12d 747 |
. . . . . . . . . 10
⊢ (𝑣 = {𝑥, 𝑃} → ((𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧) ↔ (𝑤 ∈ {𝑥, 𝑃} ∧ {𝑥, 𝑃} ⊆ 𝑧))) |
50 | 19, 49 | rexrnmpt 6409 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 {𝑥, 𝑃} ∈ V → (∃𝑣 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})(𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧) ↔ ∃𝑥 ∈ 𝐴 (𝑤 ∈ {𝑥, 𝑃} ∧ {𝑥, 𝑃} ⊆ 𝑧))) |
51 | 46, 50 | ax-mp 5 |
. . . . . . . 8
⊢
(∃𝑣 ∈ ran
(𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})(𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧) ↔ ∃𝑥 ∈ 𝐴 (𝑤 ∈ {𝑥, 𝑃} ∧ {𝑥, 𝑃} ⊆ 𝑧)) |
52 | 45, 51 | sylibr 224 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → ∃𝑣 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})(𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧)) |
53 | 52 | ralrimiva 2995 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) → ∀𝑤 ∈ 𝑧 ∃𝑣 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})(𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧)) |
54 | 53 | ex 449 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅)) → ∀𝑤 ∈ 𝑧 ∃𝑣 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})(𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧))) |
55 | 26, 54 | syl5bi 232 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} → ∀𝑤 ∈ 𝑧 ∃𝑣 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})(𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧))) |
56 | 55 | ralrimiv 2994 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ∀𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)}∀𝑤 ∈ 𝑧 ∃𝑣 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})(𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧)) |
57 | | basgen2 20841 |
. . 3
⊢ (({𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} ∈ Top ∧ ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}) ⊆ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} ∧ ∀𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)}∀𝑤 ∈ 𝑧 ∃𝑣 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})(𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧)) → (topGen‘ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)}) |
58 | 3, 22, 56, 57 | syl3anc 1366 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (topGen‘ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)}) |
59 | | eleq2 2719 |
. . . 4
⊢ (𝑦 = 𝑥 → (𝑃 ∈ 𝑦 ↔ 𝑃 ∈ 𝑥)) |
60 | | eqeq1 2655 |
. . . 4
⊢ (𝑦 = 𝑥 → (𝑦 = ∅ ↔ 𝑥 = ∅)) |
61 | 59, 60 | orbi12d 746 |
. . 3
⊢ (𝑦 = 𝑥 → ((𝑃 ∈ 𝑦 ∨ 𝑦 = ∅) ↔ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅))) |
62 | 61 | cbvrabv 3230 |
. 2
⊢ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} |
63 | 58, 62 | syl6req 2702 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} = (topGen‘ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}))) |