Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppiublem1 Structured version   Visualization version   GIF version

Theorem ppiublem1 24972
 Description: Lemma for ppiub 24974. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
ppiublem1.1 (𝑁 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑁...5) → (𝑃 mod 6) ∈ {1, 5})))
ppiublem1.2 𝑀 ∈ ℕ0
ppiublem1.3 𝑁 = (𝑀 + 1)
ppiublem1.4 (2 ∥ 𝑀 ∨ 3 ∥ 𝑀𝑀 ∈ {1, 5})
Assertion
Ref Expression
ppiublem1 (𝑀 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑀...5) → (𝑃 mod 6) ∈ {1, 5})))

Proof of Theorem ppiublem1
StepHypRef Expression
1 ppiublem1.1 . . . . . 6 (𝑁 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑁...5) → (𝑃 mod 6) ∈ {1, 5})))
21simpli 473 . . . . 5 𝑁 ≤ 6
3 ppiublem1.3 . . . . 5 𝑁 = (𝑀 + 1)
4 df-6 11121 . . . . 5 6 = (5 + 1)
52, 3, 43brtr3i 4714 . . . 4 (𝑀 + 1) ≤ (5 + 1)
6 ppiublem1.2 . . . . . 6 𝑀 ∈ ℕ0
76nn0rei 11341 . . . . 5 𝑀 ∈ ℝ
8 5re 11137 . . . . 5 5 ∈ ℝ
9 1re 10077 . . . . 5 1 ∈ ℝ
107, 8, 9leadd1i 10621 . . . 4 (𝑀 ≤ 5 ↔ (𝑀 + 1) ≤ (5 + 1))
115, 10mpbir 221 . . 3 𝑀 ≤ 5
12 6re 11139 . . . 4 6 ∈ ℝ
13 5lt6 11242 . . . 4 5 < 6
148, 12, 13ltleii 10198 . . 3 5 ≤ 6
157, 8, 12letri 10204 . . 3 ((𝑀 ≤ 5 ∧ 5 ≤ 6) → 𝑀 ≤ 6)
1611, 14, 15mp2an 708 . 2 𝑀 ≤ 6
176nn0zi 11440 . . . . 5 𝑀 ∈ ℤ
18 5nn 11226 . . . . . 6 5 ∈ ℕ
1918nnzi 11439 . . . . 5 5 ∈ ℤ
20 eluz2 11731 . . . . 5 (5 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 5 ∈ ℤ ∧ 𝑀 ≤ 5))
2117, 19, 11, 20mpbir3an 1263 . . . 4 5 ∈ (ℤ𝑀)
22 elfzp12 12457 . . . 4 (5 ∈ (ℤ𝑀) → ((𝑃 mod 6) ∈ (𝑀...5) ↔ ((𝑃 mod 6) = 𝑀 ∨ (𝑃 mod 6) ∈ ((𝑀 + 1)...5))))
2321, 22ax-mp 5 . . 3 ((𝑃 mod 6) ∈ (𝑀...5) ↔ ((𝑃 mod 6) = 𝑀 ∨ (𝑃 mod 6) ∈ ((𝑀 + 1)...5)))
24 ppiublem1.4 . . . . 5 (2 ∥ 𝑀 ∨ 3 ∥ 𝑀𝑀 ∈ {1, 5})
25 prmz 15436 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
2625adantr 480 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → 𝑃 ∈ ℤ)
27 2nn 11223 . . . . . . . . . . . 12 2 ∈ ℕ
28 6nn 11227 . . . . . . . . . . . 12 6 ∈ ℕ
29 3z 11448 . . . . . . . . . . . . . . 15 3 ∈ ℤ
30 2z 11447 . . . . . . . . . . . . . . 15 2 ∈ ℤ
31 dvdsmul2 15051 . . . . . . . . . . . . . . 15 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (3 · 2))
3229, 30, 31mp2an 708 . . . . . . . . . . . . . 14 2 ∥ (3 · 2)
33 3t2e6 11217 . . . . . . . . . . . . . 14 (3 · 2) = 6
3432, 33breqtri 4710 . . . . . . . . . . . . 13 2 ∥ 6
35 dvdsmod 15097 . . . . . . . . . . . . 13 (((2 ∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) ∧ 2 ∥ 6) → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑃))
3634, 35mpan2 707 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑃))
3727, 28, 36mp3an12 1454 . . . . . . . . . . 11 (𝑃 ∈ ℤ → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑃))
3826, 37syl 17 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑃))
39 uzid 11740 . . . . . . . . . . . 12 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
4030, 39ax-mp 5 . . . . . . . . . . 11 2 ∈ (ℤ‘2)
41 simpl 472 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → 𝑃 ∈ ℙ)
42 dvdsprm 15462 . . . . . . . . . . 11 ((2 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
4340, 41, 42sylancr 696 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
4438, 43bitrd 268 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 ∥ (𝑃 mod 6) ↔ 2 = 𝑃))
45 simpr 476 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → 4 ≤ 𝑃)
46 breq2 4689 . . . . . . . . . . 11 (2 = 𝑃 → (4 ≤ 2 ↔ 4 ≤ 𝑃))
4745, 46syl5ibrcom 237 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 = 𝑃 → 4 ≤ 2))
48 2lt4 11236 . . . . . . . . . . . 12 2 < 4
49 2re 11128 . . . . . . . . . . . . 13 2 ∈ ℝ
50 4re 11135 . . . . . . . . . . . . 13 4 ∈ ℝ
5149, 50ltnlei 10196 . . . . . . . . . . . 12 (2 < 4 ↔ ¬ 4 ≤ 2)
5248, 51mpbi 220 . . . . . . . . . . 11 ¬ 4 ≤ 2
5352pm2.21i 116 . . . . . . . . . 10 (4 ≤ 2 → (𝑃 mod 6) ∈ {1, 5})
5447, 53syl6 35 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 = 𝑃 → (𝑃 mod 6) ∈ {1, 5}))
5544, 54sylbid 230 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (2 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1, 5}))
56 breq2 4689 . . . . . . . . 9 ((𝑃 mod 6) = 𝑀 → (2 ∥ (𝑃 mod 6) ↔ 2 ∥ 𝑀))
5756imbi1d 330 . . . . . . . 8 ((𝑃 mod 6) = 𝑀 → ((2 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1, 5}) ↔ (2 ∥ 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
5855, 57syl5ibcom 235 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (2 ∥ 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
5958com3r 87 . . . . . 6 (2 ∥ 𝑀 → ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
60 3nn 11224 . . . . . . . . . . . 12 3 ∈ ℕ
61 dvdsmul1 15050 . . . . . . . . . . . . . . 15 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → 3 ∥ (3 · 2))
6229, 30, 61mp2an 708 . . . . . . . . . . . . . 14 3 ∥ (3 · 2)
6362, 33breqtri 4710 . . . . . . . . . . . . 13 3 ∥ 6
64 dvdsmod 15097 . . . . . . . . . . . . 13 (((3 ∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) ∧ 3 ∥ 6) → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑃))
6563, 64mpan2 707 . . . . . . . . . . . 12 ((3 ∈ ℕ ∧ 6 ∈ ℕ ∧ 𝑃 ∈ ℤ) → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑃))
6660, 28, 65mp3an12 1454 . . . . . . . . . . 11 (𝑃 ∈ ℤ → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑃))
6726, 66syl 17 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑃))
68 df-3 11118 . . . . . . . . . . . 12 3 = (2 + 1)
69 peano2uz 11779 . . . . . . . . . . . . 13 (2 ∈ (ℤ‘2) → (2 + 1) ∈ (ℤ‘2))
7040, 69ax-mp 5 . . . . . . . . . . . 12 (2 + 1) ∈ (ℤ‘2)
7168, 70eqeltri 2726 . . . . . . . . . . 11 3 ∈ (ℤ‘2)
72 dvdsprm 15462 . . . . . . . . . . 11 ((3 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (3 ∥ 𝑃 ↔ 3 = 𝑃))
7371, 41, 72sylancr 696 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 ∥ 𝑃 ↔ 3 = 𝑃))
7467, 73bitrd 268 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 ∥ (𝑃 mod 6) ↔ 3 = 𝑃))
75 breq2 4689 . . . . . . . . . . 11 (3 = 𝑃 → (4 ≤ 3 ↔ 4 ≤ 𝑃))
7645, 75syl5ibrcom 237 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 = 𝑃 → 4 ≤ 3))
77 3lt4 11235 . . . . . . . . . . . 12 3 < 4
78 3re 11132 . . . . . . . . . . . . 13 3 ∈ ℝ
7978, 50ltnlei 10196 . . . . . . . . . . . 12 (3 < 4 ↔ ¬ 4 ≤ 3)
8077, 79mpbi 220 . . . . . . . . . . 11 ¬ 4 ≤ 3
8180pm2.21i 116 . . . . . . . . . 10 (4 ≤ 3 → (𝑃 mod 6) ∈ {1, 5})
8276, 81syl6 35 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 = 𝑃 → (𝑃 mod 6) ∈ {1, 5}))
8374, 82sylbid 230 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (3 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1, 5}))
84 breq2 4689 . . . . . . . . 9 ((𝑃 mod 6) = 𝑀 → (3 ∥ (𝑃 mod 6) ↔ 3 ∥ 𝑀))
8584imbi1d 330 . . . . . . . 8 ((𝑃 mod 6) = 𝑀 → ((3 ∥ (𝑃 mod 6) → (𝑃 mod 6) ∈ {1, 5}) ↔ (3 ∥ 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
8683, 85syl5ibcom 235 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (3 ∥ 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
8786com3r 87 . . . . . 6 (3 ∥ 𝑀 → ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
88 eleq1a 2725 . . . . . . 7 (𝑀 ∈ {1, 5} → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5}))
8988a1d 25 . . . . . 6 (𝑀 ∈ {1, 5} → ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
9059, 87, 893jaoi 1431 . . . . 5 ((2 ∥ 𝑀 ∨ 3 ∥ 𝑀𝑀 ∈ {1, 5}) → ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5})))
9124, 90ax-mp 5 . . . 4 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) = 𝑀 → (𝑃 mod 6) ∈ {1, 5}))
923oveq1i 6700 . . . . . 6 (𝑁...5) = ((𝑀 + 1)...5)
9392eleq2i 2722 . . . . 5 ((𝑃 mod 6) ∈ (𝑁...5) ↔ (𝑃 mod 6) ∈ ((𝑀 + 1)...5))
941simpri 477 . . . . 5 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑁...5) → (𝑃 mod 6) ∈ {1, 5}))
9593, 94syl5bir 233 . . . 4 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ ((𝑀 + 1)...5) → (𝑃 mod 6) ∈ {1, 5}))
9691, 95jaod 394 . . 3 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → (((𝑃 mod 6) = 𝑀 ∨ (𝑃 mod 6) ∈ ((𝑀 + 1)...5)) → (𝑃 mod 6) ∈ {1, 5}))
9723, 96syl5bi 232 . 2 ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑀...5) → (𝑃 mod 6) ∈ {1, 5}))
9816, 97pm3.2i 470 1 (𝑀 ≤ 6 ∧ ((𝑃 ∈ ℙ ∧ 4 ≤ 𝑃) → ((𝑃 mod 6) ∈ (𝑀...5) → (𝑃 mod 6) ∈ {1, 5})))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∨ w3o 1053   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  {cpr 4212   class class class wbr 4685  ‘cfv 5926  (class class class)co 6690  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112   ≤ cle 10113  ℕcn 11058  2c2 11108  3c3 11109  4c4 11110  5c5 11111  6c6 11112  ℕ0cn0 11330  ℤcz 11415  ℤ≥cuz 11725  ...cfz 12364   mod cmo 12708   ∥ cdvds 15027  ℙcprime 15432 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-prm 15433 This theorem is referenced by:  ppiublem2  24973
 Copyright terms: Public domain W3C validator