![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ppisval2 | Structured version Visualization version GIF version |
Description: The set of primes less than 𝐴 expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014.) |
Ref | Expression |
---|---|
ppisval2 | ⊢ ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) → ((0[,]𝐴) ∩ ℙ) = ((𝑀...(⌊‘𝐴)) ∩ ℙ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ppisval 24875 | . . 3 ⊢ (𝐴 ∈ ℝ → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ)) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) → ((0[,]𝐴) ∩ ℙ) = ((2...(⌊‘𝐴)) ∩ ℙ)) |
3 | fzss1 12418 | . . . . 5 ⊢ (2 ∈ (ℤ≥‘𝑀) → (2...(⌊‘𝐴)) ⊆ (𝑀...(⌊‘𝐴))) | |
4 | 3 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) → (2...(⌊‘𝐴)) ⊆ (𝑀...(⌊‘𝐴))) |
5 | ssrin 3871 | . . . 4 ⊢ ((2...(⌊‘𝐴)) ⊆ (𝑀...(⌊‘𝐴)) → ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) → ((2...(⌊‘𝐴)) ∩ ℙ) ⊆ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) |
7 | simpr 476 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) → 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) | |
8 | elin 3829 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ) ↔ (𝑥 ∈ (𝑀...(⌊‘𝐴)) ∧ 𝑥 ∈ ℙ)) | |
9 | 7, 8 | sylib 208 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) → (𝑥 ∈ (𝑀...(⌊‘𝐴)) ∧ 𝑥 ∈ ℙ)) |
10 | 9 | simprd 478 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) → 𝑥 ∈ ℙ) |
11 | prmuz2 15455 | . . . . . . . 8 ⊢ (𝑥 ∈ ℙ → 𝑥 ∈ (ℤ≥‘2)) | |
12 | 10, 11 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) → 𝑥 ∈ (ℤ≥‘2)) |
13 | 9 | simpld 474 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) → 𝑥 ∈ (𝑀...(⌊‘𝐴))) |
14 | elfzuz3 12377 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝑀...(⌊‘𝐴)) → (⌊‘𝐴) ∈ (ℤ≥‘𝑥)) | |
15 | 13, 14 | syl 17 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) → (⌊‘𝐴) ∈ (ℤ≥‘𝑥)) |
16 | elfzuzb 12374 | . . . . . . 7 ⊢ (𝑥 ∈ (2...(⌊‘𝐴)) ↔ (𝑥 ∈ (ℤ≥‘2) ∧ (⌊‘𝐴) ∈ (ℤ≥‘𝑥))) | |
17 | 12, 15, 16 | sylanbrc 699 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) → 𝑥 ∈ (2...(⌊‘𝐴))) |
18 | 17, 10 | elind 3831 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ)) → 𝑥 ∈ ((2...(⌊‘𝐴)) ∩ ℙ)) |
19 | 18 | ex 449 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) → (𝑥 ∈ ((𝑀...(⌊‘𝐴)) ∩ ℙ) → 𝑥 ∈ ((2...(⌊‘𝐴)) ∩ ℙ))) |
20 | 19 | ssrdv 3642 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) → ((𝑀...(⌊‘𝐴)) ∩ ℙ) ⊆ ((2...(⌊‘𝐴)) ∩ ℙ)) |
21 | 6, 20 | eqssd 3653 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) → ((2...(⌊‘𝐴)) ∩ ℙ) = ((𝑀...(⌊‘𝐴)) ∩ ℙ)) |
22 | 2, 21 | eqtrd 2685 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ≥‘𝑀)) → ((0[,]𝐴) ∩ ℙ) = ((𝑀...(⌊‘𝐴)) ∩ ℙ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∩ cin 3606 ⊆ wss 3607 ‘cfv 5926 (class class class)co 6690 ℝcr 9973 0cc0 9974 2c2 11108 ℤ≥cuz 11725 [,]cicc 12216 ...cfz 12364 ⌊cfl 12631 ℙcprime 15432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-inf 8390 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-icc 12220 df-fz 12365 df-fl 12633 df-seq 12842 df-exp 12901 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-dvds 15028 df-prm 15433 |
This theorem is referenced by: ppival2g 24900 chtdif 24929 prmorcht 24949 chtppilimlem1 25207 |
Copyright terms: Public domain | W3C validator |