MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppidif Structured version   Visualization version   GIF version

Theorem ppidif 25110
Description: The difference of the prime-counting function π at two points counts the number of primes in an interval. (Contributed by Mario Carneiro, 21-Sep-2014.)
Assertion
Ref Expression
ppidif (𝑁 ∈ (ℤ𝑀) → ((π𝑁) − (π𝑀)) = (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)))

Proof of Theorem ppidif
StepHypRef Expression
1 eluzelz 11910 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
2 eluzel2 11905 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
3 2z 11622 . . . . . . 7 2 ∈ ℤ
4 ifcl 4275 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 2 ∈ ℤ) → if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ)
52, 3, 4sylancl 697 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ)
63a1i 11 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 2 ∈ ℤ)
72zred 11695 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
8 2re 11303 . . . . . . 7 2 ∈ ℝ
9 min2 12235 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 2 ∈ ℝ) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 2)
107, 8, 9sylancl 697 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 2)
11 eluz2 11906 . . . . . 6 (2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)) ↔ (if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ ∧ 2 ∈ ℤ ∧ if(𝑀 ≤ 2, 𝑀, 2) ≤ 2))
125, 6, 10, 11syl3anbrc 1429 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)))
13 ppival2g 25076 . . . . 5 ((𝑁 ∈ ℤ ∧ 2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2))) → (π𝑁) = (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)))
141, 12, 13syl2anc 696 . . . 4 (𝑁 ∈ (ℤ𝑀) → (π𝑁) = (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)))
15 min1 12234 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 2 ∈ ℝ) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 𝑀)
167, 8, 15sylancl 697 . . . . . . . . . 10 (𝑁 ∈ (ℤ𝑀) → if(𝑀 ≤ 2, 𝑀, 2) ≤ 𝑀)
17 eluz2 11906 . . . . . . . . . 10 (𝑀 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)) ↔ (if(𝑀 ≤ 2, 𝑀, 2) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ if(𝑀 ≤ 2, 𝑀, 2) ≤ 𝑀))
185, 2, 16, 17syl3anbrc 1429 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)))
19 id 22 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (ℤ𝑀))
20 elfzuzb 12550 . . . . . . . . 9 (𝑀 ∈ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ↔ (𝑀 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2)) ∧ 𝑁 ∈ (ℤ𝑀)))
2118, 19, 20sylanbrc 701 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁))
22 fzsplit 12581 . . . . . . . 8 (𝑀 ∈ (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) → (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)))
2321, 22syl 17 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (if(𝑀 ≤ 2, 𝑀, 2)...𝑁) = ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)))
2423ineq1d 3957 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)) ∩ ℙ))
25 indir 4019 . . . . . 6 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∪ ((𝑀 + 1)...𝑁)) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))
2624, 25syl6eq 2811 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ)))
2726fveq2d 6358 . . . 4 (𝑁 ∈ (ℤ𝑀) → (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑁) ∩ ℙ)) = (♯‘(((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))))
287ltp1d 11167 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 < (𝑀 + 1))
29 fzdisj 12582 . . . . . . . 8 (𝑀 < (𝑀 + 1) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
3028, 29syl 17 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
3130ineq1d 3957 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) ∩ ℙ) = (∅ ∩ ℙ))
32 inindir 3975 . . . . . 6 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ((𝑀 + 1)...𝑁)) ∩ ℙ) = (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∩ (((𝑀 + 1)...𝑁) ∩ ℙ))
33 0in 4113 . . . . . 6 (∅ ∩ ℙ) = ∅
3431, 32, 333eqtr3g 2818 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∩ (((𝑀 + 1)...𝑁) ∩ ℙ)) = ∅)
35 fzfi 12986 . . . . . . 7 (if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∈ Fin
36 inss1 3977 . . . . . . 7 ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ⊆ (if(𝑀 ≤ 2, 𝑀, 2)...𝑀)
37 ssfi 8348 . . . . . . 7 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∈ Fin ∧ ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ⊆ (if(𝑀 ≤ 2, 𝑀, 2)...𝑀)) → ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin)
3835, 36, 37mp2an 710 . . . . . 6 ((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin
39 fzfi 12986 . . . . . . 7 ((𝑀 + 1)...𝑁) ∈ Fin
40 inss1 3977 . . . . . . 7 (((𝑀 + 1)...𝑁) ∩ ℙ) ⊆ ((𝑀 + 1)...𝑁)
41 ssfi 8348 . . . . . . 7 ((((𝑀 + 1)...𝑁) ∈ Fin ∧ (((𝑀 + 1)...𝑁) ∩ ℙ) ⊆ ((𝑀 + 1)...𝑁)) → (((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin)
4239, 40, 41mp2an 710 . . . . . 6 (((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin
43 hashun 13384 . . . . . 6 ((((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin ∧ (((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin ∧ (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∩ (((𝑀 + 1)...𝑁) ∩ ℙ)) = ∅) → (♯‘(((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))) = ((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))))
4438, 42, 43mp3an12 1563 . . . . 5 ((((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∩ (((𝑀 + 1)...𝑁) ∩ ℙ)) = ∅ → (♯‘(((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))) = ((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))))
4534, 44syl 17 . . . 4 (𝑁 ∈ (ℤ𝑀) → (♯‘(((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∪ (((𝑀 + 1)...𝑁) ∩ ℙ))) = ((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))))
4614, 27, 453eqtrd 2799 . . 3 (𝑁 ∈ (ℤ𝑀) → (π𝑁) = ((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))))
47 ppival2g 25076 . . . 4 ((𝑀 ∈ ℤ ∧ 2 ∈ (ℤ‘if(𝑀 ≤ 2, 𝑀, 2))) → (π𝑀) = (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)))
482, 12, 47syl2anc 696 . . 3 (𝑁 ∈ (ℤ𝑀) → (π𝑀) = (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)))
4946, 48oveq12d 6833 . 2 (𝑁 ∈ (ℤ𝑀) → ((π𝑁) − (π𝑀)) = (((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))) − (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ))))
50 hashcl 13360 . . . . 5 (((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ) ∈ Fin → (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) ∈ ℕ0)
5138, 50ax-mp 5 . . . 4 (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) ∈ ℕ0
5251nn0cni 11517 . . 3 (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) ∈ ℂ
53 hashcl 13360 . . . . 5 ((((𝑀 + 1)...𝑁) ∩ ℙ) ∈ Fin → (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)) ∈ ℕ0)
5442, 53ax-mp 5 . . . 4 (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)) ∈ ℕ0
5554nn0cni 11517 . . 3 (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)) ∈ ℂ
56 pncan2 10501 . . 3 (((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) ∈ ℂ ∧ (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)) ∈ ℂ) → (((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))) − (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ))) = (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)))
5752, 55, 56mp2an 710 . 2 (((♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ)) + (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))) − (♯‘((if(𝑀 ≤ 2, 𝑀, 2)...𝑀) ∩ ℙ))) = (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ))
5849, 57syl6eq 2811 1 (𝑁 ∈ (ℤ𝑀) → ((π𝑁) − (π𝑀)) = (♯‘(((𝑀 + 1)...𝑁) ∩ ℙ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2140  cun 3714  cin 3715  wss 3716  c0 4059  ifcif 4231   class class class wbr 4805  cfv 6050  (class class class)co 6815  Fincfn 8124  cc 10147  cr 10148  1c1 10150   + caddc 10152   < clt 10287  cle 10288  cmin 10479  2c2 11283  0cn0 11505  cz 11590  cuz 11900  ...cfz 12540  chash 13332  cprime 15608  πcppi 25041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-2o 7732  df-oadd 7735  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-sup 8516  df-inf 8517  df-card 8976  df-cda 9203  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-n0 11506  df-z 11591  df-uz 11901  df-rp 12047  df-icc 12396  df-fz 12541  df-fl 12808  df-seq 13017  df-exp 13076  df-hash 13333  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-dvds 15204  df-prm 15609  df-ppi 25047
This theorem is referenced by:  ppiub  25150  chtppilimlem1  25383
  Copyright terms: Public domain W3C validator