MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  powm2modprm Structured version   Visualization version   GIF version

Theorem powm2modprm 15714
Description: If an integer minus 1 is divisible by a prime number, then the integer to the power of the prime number minus 2 is 1 modulo the prime number. (Contributed by Alexander van der Vekens, 30-Aug-2018.)
Assertion
Ref Expression
powm2modprm ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴 − 1) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = 1))

Proof of Theorem powm2modprm
StepHypRef Expression
1 simpll 742 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 𝑃 ∈ ℙ)
2 simpr 471 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ)
32adantr 466 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 𝐴 ∈ ℤ)
4 m1dvdsndvds 15709 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴 − 1) → ¬ 𝑃𝐴))
54imp 393 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ¬ 𝑃𝐴)
6 eqid 2770 . . . . . 6 ((𝐴↑(𝑃 − 2)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃)
76modprminv 15710 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → (((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1))
8 simpr 471 . . . . . 6 ((((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1) → ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1)
98eqcomd 2776 . . . . 5 ((((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = 1) → 1 = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
107, 9syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃𝐴) → 1 = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
111, 3, 5, 10syl3anc 1475 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 1 = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
12 modprm1div 15708 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴 mod 𝑃) = 1 ↔ 𝑃 ∥ (𝐴 − 1)))
1312biimpar 463 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (𝐴 mod 𝑃) = 1)
1413oveq1d 6807 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((𝐴 mod 𝑃) · ((𝐴↑(𝑃 − 2)) mod 𝑃)) = (1 · ((𝐴↑(𝑃 − 2)) mod 𝑃)))
1514oveq1d 6807 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (((𝐴 mod 𝑃) · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((1 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
16 zre 11582 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
1716ad2antlr 698 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 𝐴 ∈ ℝ)
18 prmm2nn0 15616 . . . . . . . . . . 11 (𝑃 ∈ ℙ → (𝑃 − 2) ∈ ℕ0)
1918anim2i 595 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0))
2019ancoms 455 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0))
2120adantr 466 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0))
22 zexpcl 13081 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (𝑃 − 2) ∈ ℕ0) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
2321, 22syl 17 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
24 prmnn 15594 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2524adantr 466 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝑃 ∈ ℕ)
2625adantr 466 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 𝑃 ∈ ℕ)
2723, 26zmodcld 12898 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℕ0)
2827nn0zd 11681 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℤ)
2924nnrpd 12072 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
3029adantr 466 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝑃 ∈ ℝ+)
3130adantr 466 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → 𝑃 ∈ ℝ+)
32 modmulmod 12942 . . . . 5 ((𝐴 ∈ ℝ ∧ ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℝ+) → (((𝐴 mod 𝑃) · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
3317, 28, 31, 32syl3anc 1475 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (((𝐴 mod 𝑃) · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
3420, 22syl 17 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴↑(𝑃 − 2)) ∈ ℤ)
3534, 25zmodcld 12898 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℕ0)
3635nn0cnd 11554 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴↑(𝑃 − 2)) mod 𝑃) ∈ ℂ)
3736mulid2d 10259 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (1 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
3837oveq1d 6807 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((1 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃))
3938adantr 466 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((1 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃))
40 reexpcl 13083 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝑃 − 2) ∈ ℕ0) → (𝐴↑(𝑃 − 2)) ∈ ℝ)
4116, 18, 40syl2anr 576 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴↑(𝑃 − 2)) ∈ ℝ)
4241, 30jca 495 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝐴↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+))
4342adantr 466 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((𝐴↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+))
44 modabs2 12911 . . . . . 6 (((𝐴↑(𝑃 − 2)) ∈ ℝ ∧ 𝑃 ∈ ℝ+) → (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
4543, 44syl 17 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → (((𝐴↑(𝑃 − 2)) mod 𝑃) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
4639, 45eqtrd 2804 . . . 4 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((1 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
4715, 33, 463eqtr3d 2812 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((𝐴 · ((𝐴↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = ((𝐴↑(𝑃 − 2)) mod 𝑃))
4811, 47eqtr2d 2805 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑃 ∥ (𝐴 − 1)) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = 1)
4948ex 397 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴 − 1) → ((𝐴↑(𝑃 − 2)) mod 𝑃) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144   class class class wbr 4784  (class class class)co 6792  cr 10136  1c1 10138   · cmul 10142  cmin 10467  cn 11221  2c2 11271  0cn0 11493  cz 11578  +crp 12034  ...cfz 12532   mod cmo 12875  cexp 13066  cdvds 15188  cprime 15591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-inf 8504  df-card 8964  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-xnn0 11565  df-z 11579  df-uz 11888  df-rp 12035  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-dvds 15189  df-gcd 15424  df-prm 15592  df-phi 15677
This theorem is referenced by:  numclwwlk5  27581
  Copyright terms: Public domain W3C validator