![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > posref | Structured version Visualization version GIF version |
Description: A poset ordering is reflexive. (Contributed by NM, 11-Sep-2011.) (Proof shortened by OpenAI, 25-Mar-2020.) |
Ref | Expression |
---|---|
posi.b | ⊢ 𝐵 = (Base‘𝐾) |
posi.l | ⊢ ≤ = (le‘𝐾) |
Ref | Expression |
---|---|
posref | ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | posprs 16996 | . 2 ⊢ (𝐾 ∈ Poset → 𝐾 ∈ Preset ) | |
2 | posi.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
3 | posi.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
4 | 2, 3 | prsref 16979 | . 2 ⊢ ((𝐾 ∈ Preset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
5 | 1, 4 | sylan 487 | 1 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 class class class wbr 4685 ‘cfv 5926 Basecbs 15904 lecple 15995 Preset cpreset 16973 Posetcpo 16987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-nul 4822 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-iota 5889 df-fv 5934 df-preset 16975 df-poset 16993 |
This theorem is referenced by: posasymb 16999 pleval2 17012 pltval3 17014 pospo 17020 lublecllem 17035 latref 17100 odupos 17182 omndmul2 29840 omndmul 29842 archirngz 29871 gsumle 29907 cvrnbtwn2 34880 cvrnbtwn3 34881 cvrnbtwn4 34884 cvrcmp 34888 llncmp 35126 lplncmp 35166 lvolcmp 35221 |
Copyright terms: Public domain | W3C validator |