MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pospo Structured version   Visualization version   GIF version

Theorem pospo 16967
Description: Write a poset structure in terms of the proper-class poset predicate (strict less than version). (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
pospo.b 𝐵 = (Base‘𝐾)
pospo.l = (le‘𝐾)
pospo.s < = (lt‘𝐾)
Assertion
Ref Expression
pospo (𝐾𝑉 → (𝐾 ∈ Poset ↔ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )))

Proof of Theorem pospo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pospo.s . . . . 5 < = (lt‘𝐾)
21pltirr 16957 . . . 4 ((𝐾 ∈ Poset ∧ 𝑥𝐵) → ¬ 𝑥 < 𝑥)
3 pospo.b . . . . 5 𝐵 = (Base‘𝐾)
43, 1plttr 16964 . . . 4 ((𝐾 ∈ Poset ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧))
52, 4ispod 5041 . . 3 (𝐾 ∈ Poset → < Po 𝐵)
6 relres 5424 . . . . 5 Rel ( I ↾ 𝐵)
76a1i 11 . . . 4 (𝐾 ∈ Poset → Rel ( I ↾ 𝐵))
8 opabresid 5453 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)} = ( I ↾ 𝐵)
98eleq2i 2692 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)} ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐵))
10 opabid 4980 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)} ↔ (𝑥𝐵𝑦 = 𝑥))
119, 10bitr3i 266 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐵) ↔ (𝑥𝐵𝑦 = 𝑥))
12 pospo.l . . . . . . . 8 = (le‘𝐾)
133, 12posref 16945 . . . . . . 7 ((𝐾 ∈ Poset ∧ 𝑥𝐵) → 𝑥 𝑥)
14 df-br 4652 . . . . . . . 8 (𝑥 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ )
15 breq2 4655 . . . . . . . 8 (𝑦 = 𝑥 → (𝑥 𝑦𝑥 𝑥))
1614, 15syl5bbr 274 . . . . . . 7 (𝑦 = 𝑥 → (⟨𝑥, 𝑦⟩ ∈ 𝑥 𝑥))
1713, 16syl5ibrcom 237 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑥𝐵) → (𝑦 = 𝑥 → ⟨𝑥, 𝑦⟩ ∈ ))
1817expimpd 629 . . . . 5 (𝐾 ∈ Poset → ((𝑥𝐵𝑦 = 𝑥) → ⟨𝑥, 𝑦⟩ ∈ ))
1911, 18syl5bi 232 . . . 4 (𝐾 ∈ Poset → (⟨𝑥, 𝑦⟩ ∈ ( I ↾ 𝐵) → ⟨𝑥, 𝑦⟩ ∈ ))
207, 19relssdv 5210 . . 3 (𝐾 ∈ Poset → ( I ↾ 𝐵) ⊆ )
215, 20jca 554 . 2 (𝐾 ∈ Poset → ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ))
22 elex 3210 . . . . 5 (𝐾𝑉𝐾 ∈ V)
2322adantr 481 . . . 4 ((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) → 𝐾 ∈ V)
243a1i 11 . . . 4 ((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) → 𝐵 = (Base‘𝐾))
2512a1i 11 . . . 4 ((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) → = (le‘𝐾))
26 equid 1938 . . . . . 6 𝑥 = 𝑥
27 simpr 477 . . . . . . 7 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵) → 𝑥𝐵)
28 resieq 5405 . . . . . . 7 ((𝑥𝐵𝑥𝐵) → (𝑥( I ↾ 𝐵)𝑥𝑥 = 𝑥))
2927, 27, 28syl2anc 693 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵) → (𝑥( I ↾ 𝐵)𝑥𝑥 = 𝑥))
3026, 29mpbiri 248 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵) → 𝑥( I ↾ 𝐵)𝑥)
31 simplrr 801 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵) → ( I ↾ 𝐵) ⊆ )
3231ssbrd 4694 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵) → (𝑥( I ↾ 𝐵)𝑥𝑥 𝑥))
3330, 32mpd 15 . . . 4 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵) → 𝑥 𝑥)
343, 12, 1pleval2i 16958 . . . . . 6 ((𝑥𝐵𝑦𝐵) → (𝑥 𝑦 → (𝑥 < 𝑦𝑥 = 𝑦)))
35343adant1 1078 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → (𝑥 𝑦 → (𝑥 < 𝑦𝑥 = 𝑦)))
363, 12, 1pleval2i 16958 . . . . . . 7 ((𝑦𝐵𝑥𝐵) → (𝑦 𝑥 → (𝑦 < 𝑥𝑦 = 𝑥)))
3736ancoms 469 . . . . . 6 ((𝑥𝐵𝑦𝐵) → (𝑦 𝑥 → (𝑦 < 𝑥𝑦 = 𝑥)))
38373adant1 1078 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → (𝑦 𝑥 → (𝑦 < 𝑥𝑦 = 𝑥)))
39 simprl 794 . . . . . . . 8 ((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) → < Po 𝐵)
40 po2nr 5046 . . . . . . . . 9 (( < Po 𝐵 ∧ (𝑥𝐵𝑦𝐵)) → ¬ (𝑥 < 𝑦𝑦 < 𝑥))
41403impb 1259 . . . . . . . 8 (( < Po 𝐵𝑥𝐵𝑦𝐵) → ¬ (𝑥 < 𝑦𝑦 < 𝑥))
4239, 41syl3an1 1358 . . . . . . 7 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → ¬ (𝑥 < 𝑦𝑦 < 𝑥))
4342pm2.21d 118 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → ((𝑥 < 𝑦𝑦 < 𝑥) → 𝑥 = 𝑦))
44 simpl 473 . . . . . . 7 ((𝑥 = 𝑦𝑦 < 𝑥) → 𝑥 = 𝑦)
4544a1i 11 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → ((𝑥 = 𝑦𝑦 < 𝑥) → 𝑥 = 𝑦))
46 simpr 477 . . . . . . . 8 ((𝑥 < 𝑦𝑦 = 𝑥) → 𝑦 = 𝑥)
4746eqcomd 2627 . . . . . . 7 ((𝑥 < 𝑦𝑦 = 𝑥) → 𝑥 = 𝑦)
4847a1i 11 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → ((𝑥 < 𝑦𝑦 = 𝑥) → 𝑥 = 𝑦))
49 simpl 473 . . . . . . 7 ((𝑥 = 𝑦𝑦 = 𝑥) → 𝑥 = 𝑦)
5049a1i 11 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → ((𝑥 = 𝑦𝑦 = 𝑥) → 𝑥 = 𝑦))
5143, 45, 48, 50ccased 988 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → (((𝑥 < 𝑦𝑥 = 𝑦) ∧ (𝑦 < 𝑥𝑦 = 𝑥)) → 𝑥 = 𝑦))
5235, 38, 51syl2and 500 . . . 4 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ 𝑥𝐵𝑦𝐵) → ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦))
53 simpr1 1066 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑥𝐵)
54 simpr2 1067 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
5553, 54, 34syl2anc 693 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 𝑦 → (𝑥 < 𝑦𝑥 = 𝑦)))
56 simpr3 1068 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
573, 12, 1pleval2i 16958 . . . . . 6 ((𝑦𝐵𝑧𝐵) → (𝑦 𝑧 → (𝑦 < 𝑧𝑦 = 𝑧)))
5854, 56, 57syl2anc 693 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑦 𝑧 → (𝑦 < 𝑧𝑦 = 𝑧)))
59 potr 5045 . . . . . . . 8 (( < Po 𝐵 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧))
6039, 59sylan 488 . . . . . . 7 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧))
61 simpll 790 . . . . . . . 8 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝐾𝑉)
6212, 1pltle 16955 . . . . . . . 8 ((𝐾𝑉𝑥𝐵𝑧𝐵) → (𝑥 < 𝑧𝑥 𝑧))
6361, 53, 56, 62syl3anc 1325 . . . . . . 7 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 < 𝑧𝑥 𝑧))
6460, 63syld 47 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 𝑧))
65 breq1 4654 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 < 𝑧𝑦 < 𝑧))
6665biimpar 502 . . . . . . 7 ((𝑥 = 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧)
6766, 63syl5 34 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 = 𝑦𝑦 < 𝑧) → 𝑥 𝑧))
68 breq2 4655 . . . . . . . 8 (𝑦 = 𝑧 → (𝑥 < 𝑦𝑥 < 𝑧))
6968biimpac 503 . . . . . . 7 ((𝑥 < 𝑦𝑦 = 𝑧) → 𝑥 < 𝑧)
7069, 63syl5 34 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 < 𝑦𝑦 = 𝑧) → 𝑥 𝑧))
7153, 33syldan 487 . . . . . . 7 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑥 𝑥)
72 eqtr 2640 . . . . . . . 8 ((𝑥 = 𝑦𝑦 = 𝑧) → 𝑥 = 𝑧)
7372breq2d 4663 . . . . . . 7 ((𝑥 = 𝑦𝑦 = 𝑧) → (𝑥 𝑥𝑥 𝑧))
7471, 73syl5ibcom 235 . . . . . 6 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 = 𝑦𝑦 = 𝑧) → 𝑥 𝑧))
7564, 67, 70, 74ccased 988 . . . . 5 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (((𝑥 < 𝑦𝑥 = 𝑦) ∧ (𝑦 < 𝑧𝑦 = 𝑧)) → 𝑥 𝑧))
7655, 58, 75syl2and 500 . . . 4 (((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))
7723, 24, 25, 33, 52, 76isposd 16949 . . 3 ((𝐾𝑉 ∧ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )) → 𝐾 ∈ Poset)
7877ex 450 . 2 (𝐾𝑉 → (( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ ) → 𝐾 ∈ Poset))
7921, 78impbid2 216 1 (𝐾𝑉 → (𝐾 ∈ Poset ↔ ( < Po 𝐵 ∧ ( I ↾ 𝐵) ⊆ )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1482  wcel 1989  Vcvv 3198  wss 3572  cop 4181   class class class wbr 4651  {copab 4710   I cid 5021   Po wpo 5031  cres 5114  Rel wrel 5117  cfv 5886  Basecbs 15851  lecple 15942  Posetcpo 16934  ltcplt 16935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-sbc 3434  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-po 5033  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-res 5124  df-iota 5849  df-fun 5888  df-fv 5894  df-preset 16922  df-poset 16940  df-plt 16952
This theorem is referenced by:  tosso  17030
  Copyright terms: Public domain W3C validator