![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > posasymb | Structured version Visualization version GIF version |
Description: A poset ordering is asymmetric. (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
posi.b | ⊢ 𝐵 = (Base‘𝐾) |
posi.l | ⊢ ≤ = (le‘𝐾) |
Ref | Expression |
---|---|
posasymb | ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1130 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Poset) | |
2 | simp2 1131 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
3 | simp3 1132 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
4 | posi.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
5 | posi.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
6 | 4, 5 | posi 17158 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌) → 𝑋 ≤ 𝑌))) |
7 | 1, 2, 3, 3, 6 | syl13anc 1478 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌) ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌) → 𝑋 ≤ 𝑌))) |
8 | 7 | simp2d 1137 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌)) |
9 | 4, 5 | posref 17159 | . . . . 5 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
10 | breq2 4791 | . . . . 5 ⊢ (𝑋 = 𝑌 → (𝑋 ≤ 𝑋 ↔ 𝑋 ≤ 𝑌)) | |
11 | 9, 10 | syl5ibcom 235 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 = 𝑌 → 𝑋 ≤ 𝑌)) |
12 | breq1 4790 | . . . . 5 ⊢ (𝑋 = 𝑌 → (𝑋 ≤ 𝑋 ↔ 𝑌 ≤ 𝑋)) | |
13 | 9, 12 | syl5ibcom 235 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 = 𝑌 → 𝑌 ≤ 𝑋)) |
14 | 11, 13 | jcad 502 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → (𝑋 = 𝑌 → (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋))) |
15 | 14 | 3adant3 1126 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 → (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋))) |
16 | 8, 15 | impbid 202 | 1 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 class class class wbr 4787 ‘cfv 6030 Basecbs 16064 lecple 16156 Posetcpo 17148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-nul 4924 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-iota 5993 df-fv 6038 df-preset 17136 df-poset 17154 |
This theorem is referenced by: pltnle 17174 pltval3 17175 lublecllem 17196 latasymb 17262 latleeqj1 17271 latleeqm1 17287 odupos 17343 poslubmo 17354 posglbmo 17355 posrasymb 29997 archirngz 30083 archiabllem1a 30085 ople0 34996 op1le 35001 atlle0 35114 |
Copyright terms: Public domain | W3C validator |