![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > poltletr | Structured version Visualization version GIF version |
Description: Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
Ref | Expression |
---|---|
poltletr | ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ 𝐵(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poleloe 5685 | . . . . 5 ⊢ (𝐶 ∈ 𝑋 → (𝐵(𝑅 ∪ I )𝐶 ↔ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶))) | |
2 | 1 | 3ad2ant3 1130 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵(𝑅 ∪ I )𝐶 ↔ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶))) |
3 | 2 | adantl 473 | . . 3 ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵(𝑅 ∪ I )𝐶 ↔ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶))) |
4 | 3 | anbi2d 742 | . 2 ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ 𝐵(𝑅 ∪ I )𝐶) ↔ (𝐴𝑅𝐵 ∧ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶)))) |
5 | potr 5199 | . . . . 5 ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶)) | |
6 | 5 | com12 32 | . . . 4 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵𝑅𝐶) → ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴𝑅𝐶)) |
7 | breq2 4808 | . . . . . 6 ⊢ (𝐵 = 𝐶 → (𝐴𝑅𝐵 ↔ 𝐴𝑅𝐶)) | |
8 | 7 | biimpac 504 | . . . . 5 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵 = 𝐶) → 𝐴𝑅𝐶) |
9 | 8 | a1d 25 | . . . 4 ⊢ ((𝐴𝑅𝐵 ∧ 𝐵 = 𝐶) → ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴𝑅𝐶)) |
10 | 6, 9 | jaodan 861 | . . 3 ⊢ ((𝐴𝑅𝐵 ∧ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶)) → ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴𝑅𝐶)) |
11 | 10 | com12 32 | . 2 ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ (𝐵𝑅𝐶 ∨ 𝐵 = 𝐶)) → 𝐴𝑅𝐶)) |
12 | 4, 11 | sylbid 230 | 1 ⊢ ((𝑅 Po 𝑋 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑅𝐵 ∧ 𝐵(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∪ cun 3713 class class class wbr 4804 I cid 5173 Po wpo 5185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-id 5174 df-po 5187 df-xp 5272 df-rel 5273 |
This theorem is referenced by: soltmin 5690 |
Copyright terms: Public domain | W3C validator |