![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > polsubclN | Structured version Visualization version GIF version |
Description: A polarity is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
polsubcl.a | ⊢ 𝐴 = (Atoms‘𝐾) |
polsubcl.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
polsubcl.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
Ref | Expression |
---|---|
polsubclN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
2 | eqid 2760 | . . 3 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
3 | polsubcl.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | eqid 2760 | . . 3 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
5 | polsubcl.p | . . 3 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
6 | 1, 2, 3, 4, 5 | polval2N 35713 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋)))) |
7 | hlop 35170 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
8 | 7 | adantr 472 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝐾 ∈ OP) |
9 | hlclat 35166 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
10 | eqid 2760 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
11 | 10, 3 | atssbase 35098 | . . . . . 6 ⊢ 𝐴 ⊆ (Base‘𝐾) |
12 | sstr 3752 | . . . . . 6 ⊢ ((𝑋 ⊆ 𝐴 ∧ 𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾)) | |
13 | 11, 12 | mpan2 709 | . . . . 5 ⊢ (𝑋 ⊆ 𝐴 → 𝑋 ⊆ (Base‘𝐾)) |
14 | 10, 1 | clatlubcl 17333 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
15 | 9, 13, 14 | syl2an 495 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) |
16 | 10, 2 | opoccl 35002 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) |
17 | 8, 15, 16 | syl2anc 696 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) |
18 | polsubcl.c | . . . 4 ⊢ 𝐶 = (PSubCl‘𝐾) | |
19 | 10, 4, 18 | pmapsubclN 35753 | . . 3 ⊢ ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∈ 𝐶) |
20 | 17, 19 | syldan 488 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∈ 𝐶) |
21 | 6, 20 | eqeltrd 2839 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 ‘cfv 6049 Basecbs 16079 occoc 16171 lubclub 17163 CLatccla 17328 OPcops 34980 Atomscatm 35071 HLchlt 35158 pmapcpmap 35304 ⊥𝑃cpolN 35709 PSubClcpscN 35741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-riotaBAD 34760 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-undef 7569 df-preset 17149 df-poset 17167 df-plt 17179 df-lub 17195 df-glb 17196 df-join 17197 df-meet 17198 df-p0 17260 df-p1 17261 df-lat 17267 df-clat 17329 df-oposet 34984 df-ol 34986 df-oml 34987 df-covers 35074 df-ats 35075 df-atl 35106 df-cvlat 35130 df-hlat 35159 df-pmap 35311 df-polarityN 35710 df-psubclN 35742 |
This theorem is referenced by: osumcllem9N 35771 pexmidN 35776 |
Copyright terms: Public domain | W3C validator |