Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polsubN Structured version   Visualization version   GIF version

Theorem polsubN 35715
 Description: The polarity of a set of atoms is a projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polsubsp.a 𝐴 = (Atoms‘𝐾)
polsubsp.s 𝑆 = (PSubSp‘𝐾)
polsubsp.p = (⊥𝑃𝐾)
Assertion
Ref Expression
polsubN ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ∈ 𝑆)

Proof of Theorem polsubN
StepHypRef Expression
1 eqid 2761 . . 3 (lub‘𝐾) = (lub‘𝐾)
2 eqid 2761 . . 3 (oc‘𝐾) = (oc‘𝐾)
3 polsubsp.a . . 3 𝐴 = (Atoms‘𝐾)
4 eqid 2761 . . 3 (pmap‘𝐾) = (pmap‘𝐾)
5 polsubsp.p . . 3 = (⊥𝑃𝐾)
61, 2, 3, 4, 5polval2N 35714 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))))
7 hllat 35172 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
87adantr 472 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝐾 ∈ Lat)
9 hlop 35171 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
109adantr 472 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝐾 ∈ OP)
11 hlclat 35167 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ CLat)
12 eqid 2761 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1312, 3atssbase 35099 . . . . . 6 𝐴 ⊆ (Base‘𝐾)
14 sstr 3753 . . . . . 6 ((𝑋𝐴𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾))
1513, 14mpan2 709 . . . . 5 (𝑋𝐴𝑋 ⊆ (Base‘𝐾))
1612, 1clatlubcl 17334 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
1711, 15, 16syl2an 495 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
1812, 2opoccl 35003 . . . 4 ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾))
1910, 17, 18syl2anc 696 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾))
20 polsubsp.s . . . 4 𝑆 = (PSubSp‘𝐾)
2112, 20, 4pmapsub 35576 . . 3 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∈ 𝑆)
228, 19, 21syl2anc 696 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∈ 𝑆)
236, 22eqeltrd 2840 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ∈ 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2140   ⊆ wss 3716  ‘cfv 6050  Basecbs 16080  occoc 16172  lubclub 17164  Latclat 17267  CLatccla 17329  OPcops 34981  Atomscatm 35072  HLchlt 35159  PSubSpcpsubsp 35304  pmapcpmap 35305  ⊥𝑃cpolN 35710 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-riotaBAD 34761 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-undef 7570  df-preset 17150  df-poset 17168  df-lub 17196  df-glb 17197  df-join 17198  df-meet 17199  df-p1 17262  df-lat 17268  df-clat 17330  df-oposet 34985  df-ol 34987  df-oml 34988  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-psubsp 35311  df-pmap 35312  df-polarityN 35711 This theorem is referenced by:  polssatN  35716  pclss2polN  35729  psubclsubN  35748  osumcllem1N  35764
 Copyright terms: Public domain W3C validator