![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > polpmapN | Structured version Visualization version GIF version |
Description: The polarity of a projective map. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
polpmap.b | ⊢ 𝐵 = (Base‘𝐾) |
polpmap.o | ⊢ ⊥ = (oc‘𝐾) |
polpmap.m | ⊢ 𝑀 = (pmap‘𝐾) |
polpmap.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
polpmapN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑃‘(𝑀‘𝑋)) = (𝑀‘( ⊥ ‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | polpmap.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2771 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
3 | polpmap.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
4 | 1, 2, 3 | pmapssat 35568 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ (Atoms‘𝐾)) |
5 | eqid 2771 | . . . 4 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
6 | polpmap.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
7 | polpmap.p | . . . 4 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
8 | 5, 6, 2, 3, 7 | polval2N 35715 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑀‘𝑋) ⊆ (Atoms‘𝐾)) → (𝑃‘(𝑀‘𝑋)) = (𝑀‘( ⊥ ‘((lub‘𝐾)‘(𝑀‘𝑋))))) |
9 | 4, 8 | syldan 579 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑃‘(𝑀‘𝑋)) = (𝑀‘( ⊥ ‘((lub‘𝐾)‘(𝑀‘𝑋))))) |
10 | eqid 2771 | . . . . . . 7 ⊢ (le‘𝐾) = (le‘𝐾) | |
11 | 1, 10, 2, 3 | pmapval 35566 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) |
12 | 11 | fveq2d 6337 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((lub‘𝐾)‘(𝑀‘𝑋)) = ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋})) |
13 | hlomcmat 35174 | . . . . . 6 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat)) | |
14 | 1, 10, 5, 2 | atlatmstc 35128 | . . . . . 6 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) = 𝑋) |
15 | 13, 14 | sylan 569 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) = 𝑋) |
16 | 12, 15 | eqtrd 2805 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ((lub‘𝐾)‘(𝑀‘𝑋)) = 𝑋) |
17 | 16 | fveq2d 6337 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘((lub‘𝐾)‘(𝑀‘𝑋))) = ( ⊥ ‘𝑋)) |
18 | 17 | fveq2d 6337 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘( ⊥ ‘((lub‘𝐾)‘(𝑀‘𝑋)))) = (𝑀‘( ⊥ ‘𝑋))) |
19 | 9, 18 | eqtrd 2805 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑃‘(𝑀‘𝑋)) = (𝑀‘( ⊥ ‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 {crab 3065 ⊆ wss 3723 class class class wbr 4787 ‘cfv 6030 Basecbs 16064 lecple 16156 occoc 16157 lubclub 17150 CLatccla 17315 OMLcoml 34984 Atomscatm 35072 AtLatcal 35073 HLchlt 35159 pmapcpmap 35306 ⊥𝑃cpolN 35711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-riotaBAD 34761 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-undef 7555 df-preset 17136 df-poset 17154 df-plt 17166 df-lub 17182 df-glb 17183 df-join 17184 df-meet 17185 df-p0 17247 df-p1 17248 df-lat 17254 df-clat 17316 df-oposet 34985 df-ol 34987 df-oml 34988 df-covers 35075 df-ats 35076 df-atl 35107 df-cvlat 35131 df-hlat 35160 df-pmap 35313 df-polarityN 35712 |
This theorem is referenced by: 2polpmapN 35722 2polvalN 35723 3polN 35725 pmapj2N 35738 pmapocjN 35739 2polatN 35741 poml4N 35762 pmapojoinN 35777 |
Copyright terms: Public domain | W3C validator |